全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Influence of pH to Increase Grafting Degree into Fluoropolymers

DOI: 10.4236/ojpchem.2017.73004, PP. 43-56

Keywords: ETFE and FEP, Grafting Copolymer, Enhanced at Low pH

Full-Text   Cite this paper   Add to My Lib

Abstract:

Poly(ethylene-alt-tetra-fluoroethylene (ETFE) and poly(tetrafluoroethylene-cohexafluoropropylene) (FEP) were pre-irradiated under air using a Co60 gamma source to graft styrene at low pH. Grafting copolymers were tuned by study of different parameters (monomer, reaction time, temperature, and pH with addition of sulfuric acid (H2SO4)). The maximum degree of grafting was 80% and 40% for ETFE and FEP respectively at dose 2 kGy. Influence of low pH in grafting degree by adding sulfuric acid was studied. Grafting degree was examined by infrared (FTIR-ATR), differential scanning calorimetry (DSC) and swelling behavior analysis after sulfonation process.

References

[1]  Stannett, V.T. (1990) Radiation Grafting State of the Art. Radiation Physics and Chemistry, 35, 82-87.
https://doi.org/10.1016/1359-0197(90)90062-M
[2]  Dondi, D., Buttafava, A., Faucitano, A., Arimondi, M., Ballabio, O. and Caracino, P.(2009) Post Irradiation Grafting of Styrene onto Polyethylene. Radiation Physics and Chemistry, 78, 521-524.
https://doi.org/10.1016/j.radphyschem.2009.03.038
[3]  Estrada-Villegas, G.M. and Bucio, E. (2012) Temperature and pH-Responsive Behavior of a Novel Copolymer of (PP-g-DMAEMA)-g-AAc. Journal of Radioanalytical and Nuclear Chemistry, 292, 1-6.
https://doi.org/10.1007/s10967-011-1603-z
[4]  Misra, S.K., Bhardwaj, Y.K. and Gandhi, P.M. (2013) Feasibility of the Recovery of Uranium from Alkaline Waste by Amidoximated Grafted Polypropylene Polymer Matrix. Journal of Radioanalytical and Nuclear Chemistry, 295, 471-475.
https://doi.org/10.1007/s10967-012-1798-7
[5]  Kavakli, P.A., Kavakli, C., Seko, N., Tamada, M. and Güven, O. (2016) Radiation Induced Emulsion Graft Polymerization of 4-Vinylpyridine onto PE/PP Nonwoven Fabric for As (V) Adsorption. Radiation Physics and Chemistry, 127, 13-20.
https://doi.org/10.1016/j.radphyschem.2016.05.020
[6]  Kornacka, E.M., Przybytniak, G., Fuks, L., Walo, M. and Lyczko, K. (2014) Functionalization of Polymer Surfaces by Radiation-Induced Grafting for Separation of Heavy Metal Ions. Radiation Physics and Chemistry, 94, 115-118.
https://doi.org/10.1016/j.radphyschem.2013.05.047
[7]  Iwanade, A., Kasai, N., Hoshina, H., Ueki, Y., Saiki, S. and Seko, N. (2012) Hybrid Grafted Ion Exchanger for Decontamination of Radioactive Cesium in Fukushima Prefecture and Other Contaminated Areas. Journal of Radioanalytical and Nuclear Chemistry, 293, 703-709.
https://doi.org/10.1007/s10967-012-1721-2
[8]  Sithambaranathan, P., Nasef, M.M. and Ahmad, A. (2015) Kinetic Behavior of Graft Copolymerization of Nitrogenous Heterocyclic Monomer onto EB-Irradiated ETFE Films. Journal of Radioanalytical and Nuclear Chemistry, 304, 1225-1234.
https://doi.org/10.1007/s10967-015-3927-6
[9]  El-Fadl. F.I.A. (2014) Radiation Grafting of Ionically Crosslinked Alginate/Chitosan Beads with Acrylic Acid for Lead Sorption. Journal of Radioanalytical and Nuclear Chemistry, 301, 529-535.
https://doi.org/10.1007/s10967-014-3149-3
[10]  Aggour, Y.A., Al-Shihri, A.S. and Bazzet, M.R. (2013) Chemical Modification of Scraped Tires through Grafting with 2-Acrylamido-2-Methylpropansulfonic Acid. Open Journal of Polymer Chemistry, 3, 48-53.
https://doi.org/10.4236/ojpchem.2013.33010
[11]  Barakat, M.F., El-Salmawy, K.M. and Zahran, A.H. (2016) Radiation Induced Grafting of Acrylic Acidonto Viscose Rayon Fabrics and Its After-Effects. Open Journal of Polymer Chemistry, 6, 27-42.
https://doi.org/10.4236/ojpchem.2016.63004
[12]  Kook, J.W., Lee, J.Y., Hwang, K.S., Park, I., Kim, J.H. and Lee, J.Y. (2016) Synthesis and Characterization of Poly(Methyl Methacrylate)/Polyethylenimine Grafting Core-Shell Nanoparticles for CO2 Adsorption using Soap-Free Emulsion Copolymerization. Advances in Materials Physics and Chemistry, 6, 220-229.
https://doi.org/10.4236/ampc.2016.67022
[13]  Barakat, M., Barakat, B.F.A., El-Salmawy, K.M. and Zahran, A.H.H. (2017) Radiation Induced Grafting of Viscose Rayon Fabrics with Some Acrylic Acid Derivatives and Styrene. Open Journal of Polymer Chemistry, 7, 1-18.
https://doi.org/10.4236/ojpchem.2017.71001
[14]  Smith, B., Sridhar, S. and Khan, A.A. (2005) Solid Polymer Electrolyte Membranes for Fuel Cells a Review. Journal of Membrane Science, 259, 10-26.
[15]  Souzy, R., Ameduri, B., Boutevin, B., Gebel, G. and Capron, P. (2005) Functional Fluoropolymers for Fuel Cell Membranes. Solid State Ionics, 176, 2839-2848.
[16]  Yamaki, T. (2010) Quantum-Beam Technology: A Versatile Tool for Developing Polymer Electrolyte Fuel-Cell Membranes. Journal of Power Sources, 195, 5848-5855.
[17]  Gode, P., Ihonen, J., Strandroth, A., Ericson, H., Lindbergh, G., Paronen, M., Sundholm, F., Sundholm, G. and Walsby, N. (2003) Membrane Durability in a PEM Fuel Cell Studied using PVDF Based Radiation Grafted Membranes. Fuel Cells, 3, 21-27.
https://doi.org/10.1002/fuce.200320239
[18]  Horsfall, J.A. and Lovell, K.V. (2002) Comparison of Fuel Cell Performance of Selected Fluoropolymer and Hydrocarbon Based Grafted Copolymers Incorporating Acrylic Acid and Styrene Sulfonic Acid. Polymer Advance and Technology, 13, 381-390.
https://doi.org/10.1002/pat.202
[19]  DeLuca, N.W. and Elabd, Y.A. (2006) Polymer Electrolyte Membranes for the Direct Methanol Fuel Cell: A Review. Journal of Polymer Science Polymer Physics, 44, 2201-2225.
https://doi.org/10.1002/polb.20861
[20]  Ben-youcef, H., Gubler, L., Schmitz, A.F. and Scherer, G.G. (2011) Improvement of Homogeneity and Interfacial Properties of Radiation Grafted Membranes for Fuel Cells using Diisopropenyl Benzene Crosslinker. Journal of Membrane Science, 381, 102-109.
[21]  Gubler, L. and Scherer, G.G. (2010) Trends for Fuel Cell Membrane Development. Desalination, 250, 1034-1037.
[22]  Balog, S., Gasser, U., Mortensen, K., Ben-youcef, H., Gubler, L. and Scherer, G.G. (2012) Structure of the Ion-Rich Phase in DVB Cross-Linked Graft-Copolymer Proton-Exchange Membranes. Polymer, 53, 175-182.
[23]  Fei, G., Kang, S.A., Ko, B.S., Lee, Y.S., Nho, Y.C. and Shin, J. (2010) Influence of the Radiation Grafting Conditions on the Cross-Sectional Distribution of Poly (vinylbenzyl Chloride) Grafted Polymer onto Poly (tetrafluoroethylene-co-hexafluoropropylene) Films. Journal of Applied Polymer Science, 117, 2380-2385.
https://doi.org/10.1002/app.32078
[24]  Sung, A.K., Junhwa, S., Geng, F., Beom-Seok, K., Chong-Yeal, K. and Nho, Y.C. (2010) Radiolytic Preparation of Poly(styrene sulfonic acid)-Grafted Poly (tetrafluoroethylene-co-perfluorovinyl vinyl ether) Membranes with Highly Cross-Linked Networks. Nuclear Instruments and Methods in Physics Research B, 268, 3458-3463.
[25]  Lappan, U., Geissler, U., Gohs, U. and Uhlmann, S. (2010) Grafting of Styrene into Pre-Irradiated Fluoropolymer Films: Influence of Base Material and Irradiation Temperature. Radiation Physics and Chemistry, 79, 1067-1072.
[26]  Dargaville, T.R., George, G.A., Hill, D.J.T. and Whittaker, A.K. (2003) High Energy Radiation Grafting of Fluoropolymers. Progress in Polymer Science, 28, 1355-1376.
[27]  Qiu, J., Ni, J., Zhai, M., Peng, J., Zhou, H., Li, J. and Wei, G. (2007) Radiation Grafting of Styrene and Maleic Anhydride onto PTFE Membranes and Sequent Sulfonation for Applications of Vanadium Redox Battery. Radiation Physics and Chemistry, 76, 1703-1707.
[28]  Bhattacharya, A. and Misra, B.N. (2004) Grafting: A Versatile Means to Modify Polymers Techniques, Factors and Applications. Progress in Polymer Science, 29, 767-814.
[29]  Dworjanyn, P.A., Garnett, J.L., Khan, M.A., Maojun, X., Meng-Ping, Q. and Nho, Y.C. (1993) Novel Additives for Accelerating Radiation Grafting and Curing Reactions. Radiation Physics and Chemistry, 42, 31-40.
[30]  Kang, S., Shin, J., Fei, G., Ko, B.S., Kim, C.Y. and Nho, Y.C. (2010) Radiolytic Preparation of Poly(styrene sulfonic acid) Grafted Poly (tetrafluoroethylene-co-perfluorovinyl vinyl ether) Membranes with Highly Cross-Linked Networks. Nuclear Instruments and Methods. Physics Research B, 268, 3458-3463.
[31]  Chen, J., Asano, M., Yamaki, T. and Yoshida, M. (2006) Effect of Crosslinkers on the Preparation and Properties of ETFE-Based Radiation-Grafted Polymer Electrolyte Membranes. Journal of Applied Polymer Science, 100, 4565-4574.
https://doi.org/10.1002/app.22567
[32]  Gupta, B., Büchi, F.N., Scherer, G.G. and Chapir, A. (1996) Crosslinked Ion Exchange Membranes by Radiation Grafting of Styrene/Divinylbenzene into FEP Films. Journal Membrane Science, 118, 231-238.
[33]  Ang, C.H., Garnett, J.L., Levot, R. and Long, M.A. (1982) Polyfunctional Monomers as Additives for Enhancing the Radiation Copolymerization of Styrene with Polyethylene, Polypropylene, and PVC. Journal of Applied Polymer Science, 27, 4893-4895.
https://doi.org/10.1002/app.1982.070271235
[34]  Nho, Y.C., Chen, J. and Jin, J.H. (1999) Grafting Polymerization of Styrene onto Preirradiated Polypropylene Fabric. Radiation Physics and Chemistry, 54, 317-322.
[35]  Zhao, C., Shi, S., Mir, D., Hurst, D., Li, R., Xiao, X., Lillig, J. and Czarnik, A.W. (1999) Polystyrene Grafted Fluoropolymer Microtubes: New Supports for Solid-Phase Organic Synthesis with Useful Performance at High Temperature. Journal of Combinatorial Chemistry, 1, 91-95.
https://doi.org/10.1021/cc980011c
[36]  Garnett, J.L. and Yen, N.T. (1974) Effect of Acid on the Radiation-Induced Grafting of Monomers to Polyolefins. Polymer Letters, 12, 225-229.
https://doi.org/10.1002/pol.1974.130120409
[37]  Garnett, J.L., Jankiewicz, S.V. and Sangster, D.F. (1990) Mechanistic Aspects of the Acid and Salt Effect in Radiation Grafting. Radiation Physics and Chemistry, 36, 571-579.
[38]  United States Patent (2001) US 6,306,975 B1.
[39]  Nasef, M.M. (2001) Effect of Solvents on Radiation-Induced Grafting of Styrene onto Fluorinated Polymer Films. Polymer International, 50, 338-346.
https://doi.org/10.1002/pi.634
[40]  Gürsel, S.A., Gubler, L., Gupta, B. and Scherer, G.G. (2008) Radiation Grafted Membranes. Advance in Polymer Science, 215, 157-217.
[41]  Gubler, L., Gürsel, S.A. and Scherer, G.G. (2005) Radiation Grafted Membranes for Polymer Electrolyte. Fuel Cell, 5, 318-335.
https://doi.org/10.1002/fuce.200400078
[42]  Gubler, L., Kuhn, H., Schmidt, T.J., Scherer, G.G., Brack, H.P. and Simbeck, K. (2004) Performance and Durability of Membrane Electrode Assemblies Based on Radiation-Grafted FEP-g-Polystyrene Membranes. Fuel Cells, 4, 196-207.
https://doi.org/10.1002/fuce.200400019
[43]  Ben-youcef, H., Gürsel, A.S., Wokaun, A. and Scherer, G.G. (2008) The Influence of Crosslinker on the Properties of Radiation-Grafted Films and Membranes Based on ETFE. Journal of Membrane Science, 311, 208-215.
[44]  Ben-youcef, H., Gubler, L., Yamaki, T., Sawada, S., Gürsel, A.S., Wokaun, A. and Scherer, G.G. (2009) Cross-Linker Effect in ETFE-Based Radiation-Grafted Proton-Conducting Membranes. Journal of Electrochemical Society, 156, B532-B539.
https://doi.org/10.1149/1.3082109
[45]  Gubler, L., Prost, N., Gürsel, S.A. and Scherer, G.G. (2005) Proton Exchange Membranes Prepared by Radiation Grafting of Styrene/Divinyl Benzene onto Poly(ethylene-alt-tetrafluoroethylene) for Low Temperature Fuel Cells. Solid State Ionics, 176, 2849-2860.
[46]  Nasef, M.M. and Hegazy, E.S.A. (2004) Preparation and Applications of Ion Exchange Membranes by Radiation-Induced Graft Copolymerization of Polar Monomers onto Non-Polar Films. Progress in Polymer Science, 29, 499-561.
[47]  Gubler, L., Ben-youcef, H., Gürsel, AS., Wokaun, A. and Scherer, G.G. (2008) Cross-Linker Effect in ETFE-Based Radiation-Grafted Proton-Conducting Membranes I. Properties and Fuel Cell Performance Characteristics. Electrochemical Society, 155, B921-B928.
https://doi.org/10.1149/1.2951919
[48]  Buzanowski, W.C., Graham, J.D., Priddy, D.B. and Shero, E. (1992) Spontaneous Polymerization of Styrene in the Presence of Acid: Further Confirmation of the Mayo Mechanism. Polymer, 33, 3055-3059.
[49]  Woods, R.J. and Pikaev, A.K. (1994) Applied Radiation Chemistry: Radiation Processing. Wiley, New York.
[50]  Brack, H.P., Büchi, F.N., Huslage, J., Rota, M., Scherer, G.G., Pinnau, I., Freeman B.D., (Eds.) (2000) Membrane Formation and Modification. Applications Based on Poly(ethylene-alt-tetrafluoroethylene). ACS Symposium Series, American. Chemical Society, 744, 174-188.
[51]  Mark, J.E. (1996) Physical Properties of Polymers Handbook. AIP Press, Woodbury, New York.
[52]  Brandrup, J. and Immergut, E.H. (1989) Polymer Handbook. 3d Edition, Wiley-Interscience, New York.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133