The risks and damages related to the use of products, technologies and services of sanitary interest can be due to defects or manufacturing failures. Certain products already contain a certain degree of risk, which requires strict quality control in their production, distribution and use, as well as in the disposal of their waste in the environment. With continuous development in science and technology, medical devices must undergo intradermal irritation and testing for sensitization, cytotoxicity, and acute systemic toxicity. In health care, biotechnology aims to provide technology-based products or processes related to energy, food, and health, which are capable of stimulating new businesses, expanding exports, integrating the value chain and stimulating new demands for innovative products and processes, taking into account health policies. The present article was prepared by a bibliographical survey of the electronic databases PubMed, Lilacs, and Bireme. Cell culture testing can be successfully employed, as it is reproducible, rapid, sensitive, and financially accessible for performing in vitro toxicity testing. Thus, it has been possible to optimize the development phase of new products by decreasing animal use or even replacing them in certain tests. Some in vitro assays validated by the Organization for Economic Cooperation and Development in the area of health products have already replaced animal testing.
References
[1]
Costa, E.A.M. (2014) Reflections on Health Safety in Reprocessing of Health Products. Health Surveillance in Debate, 2, 7-13. https://doi.org/10.3395/vd.v2i1.119
[2]
Vicente, M.G. (2012) Post-Marketing Surveillance of Health Products: Technovigilance as a Public Health Practice. Boletim Informativo de Tecnovigilancia, 3.
[3]
Rai, R., Keshavarz, T., Roether, J.A., Boccaccini, A.R. and Roy, I. (2011) Medium Chain Length Polyhydroxyalkanoates, Promising New Biomedical Medical Devices for the Future, Medical Devices Science and Engineering: R. Reports, 72, 29-47.
[4]
Scelza, M.Z., Linhares, A.B., Da Silva, L.E., Granjeiro, J.M. and Alves, G.G. (2012) A Multiparametric Assay to Compare the Cytotoxicity of Endodontic Sealers with Primary Human Osteoblasts. International Endodontic Journal, 45, 12-18. https://doi.org/10.1111/j.1365-2591.2011.01941.x
[5]
Kumar, S. (2015) Biosafety and Biosecurity Issues in Biotechnology Research. Biosafety, 4, 153. https://doi.org/10.4172/2167-0331.1000e153
[6]
Biotechnology Development Policy. http://www.lexml.gov.br/urn/urn:lex:br:federal:decreto:2007-02-08;6041.
[7]
Reis, C., Landim, A.B. and Pieroni, J.P. (2011) Lessons from International Experience and Proposals for Incorporation of the Route Biotechnology in the Brazilian Pharmaceutical Industry. BNDES Setorial, 34, 5-44.
[8]
ANVISA (2010) National Health Surveillance Agency. Consumption and Health. Condoms: A Security Issue, ANVISA e DPDC. Ano, 3, No. 15.
[9]
ANVISA (2008) National Health Surveillance Agency. Resolution RDC No. 62 of September 3, 2008. Imprensa Nacional, Brasília.
[10]
Trindade, E., Vicente, M.G., Santanna, P.C., Melchior, S.C., Pismel, A.M.C.L., Tinoco, A.T.M., Santos, M.M.A., Ferreira, P.A., Avila, R., Hofmeister, M.G.S., Sorgenfrei, R.H.H.H. (2010) Failure modes of medical-hospital articles: Biomedical Science and Engineering Analysis of Technical Complaints Involving Infusion Equipment Notified to ANVISA in 2007 and 2008. Boletim Informativo de Tecnovigilancia, 2010, 1-20.
[11]
Infarmed (2013a) Obtido em 5 de setembro de 2015. de INFARMED. http://www.infarmed.pt/portal/page/portal/INFARMED/DISPOSITIVOS_MEDICOS
[12]
Alves, E.C. (2013) Clinical Investigation in Medical Devices. Portuguese Journal of Surgery, 24, 65-68.
Vidal, M.N.P. and Miranda, A.C. (2010) Biomaterial Toxicity an Alert to Health Services. Analytica Magazine, São Paulo, 45.
[15]
Vidal, M.N., Aiub, C., Abrantes, S. and Zamith, H.P. (2009) Evaluation of Brazilian Medical Devices Using Agar Diffusion Cytotoxicity Assay. Revista Brasileira de Hematologia e Hemoterapia, 31, 84-87.
[16]
The United States Pharmacopeia (2017) National Formulary 34. 40th Edition, U.S. Pharmacopeial, Rockville. [87] Biological Reactivity Tests, in Vitro: Agar Diffusion Test. United States Pharmacopeial Convention.
[17]
Tironi, L.F. (2014) Globalization in Technological Services. Radar: Technology, Production and Foreign Trade, 33, 27-35.
[18]
Floriani, C.A. and Schramm, F.R. (2008) Palliative Care: Interfaces, Conflicts and Necessities. Science & Collective Health, 13, 2123-2132. https://doi.org/10.1590/S1413-81232008000900017
[19]
Costa, D., Lacaz, F.A.D.C., Jackson Filho, J.M. and Vilela, R.A.G. (2013) Saúde do Trabalhador no SUS: Desafios para uma política pública [Occupational Health in SUS: Challenges to a Public Policy]. Revista Brasileira de Saúde Ocupacional.
[20]
Brasil, R.A. (2006) Resolução ANVISA RDC. n°. 207 de 17 de novembro de 2006 Altera a Resolução ANVISA RDC [Resolution ANVISA RDC. No. 207 of November 17, 2006 Amends Resolution ANVISA RDC], 185.
[21]
Rocha, M. (2015) Vigilancia de dispositivos médicos: Do registo à sua utilização [Surveillance of Medical Devices: From Registration to Use]. Tese de Doutorado.
[22]
Falk, M.L.R., Falk, J.W., de Oliveira, F.A. and da Motta, M.S. (2010) Acolhimento como dispositivo de humanização: Percepção do usuário e do trabalhador em saúde [Reception as Humanizing Device: Perception of the User and Health Worker]. Revista de APS, 13, 4-9.
[23]
Filho, S.A., da Silva, C.G.N. and Bigi, M.D.F.M.A. (2015) Bioprospecção e Biotecnologia [Bioprospecting and Biotechnology]. Parcerias Estratégicas, 19, 45-80.
[24]
International Organization for Standardization (1992) ISO 10993-5: International Standard Biological Evaluation of Medical Devices Part 5: Tests for Cytotoxicity in Vitro Methods.
[25]
da Silva, M.A., Guimarães, P.C.L., Pereira, T.D. and Honório-França, A.C. (2012) Biomateriais e sua biocompatibilidade numa abordagem multidisciplinar na área de saúde, alimentos funcionais e medicina regenerativa [Biomaterials and Their Biocompatibility in a Multidisciplinary Approach in Health, Functional Foods and Regenerative Medicine]. Revista Eletrônica Interdisciplinar, 2.
[26]
Borelli, V., Medeiros, F., Maia, M., Medeiros, R. and Higa, O.Z. (2014) Biocompatibilidade de biomateriais: Estudo exploratorio sobre a aplicacao da norma ISO 10.993 [Biotechnology of Biomaterials: An Exploratory Study on the Application of ISO 10993].
[27]
Motisuke, M., Rodas, A.C.D., Higa, O.Z., Carrodeguas, R.G. and Zavaglia, C.A.C. (2014) Avaliação de Citotoxicidade de Cimento de Fosfato de Cálcio [Evaluation of Cytotoxicity of Calcium Phosphate Cement].
[28]
Costa, E.A.M., Costa, E.A., Graziano, K.U. and Padoveze, M.C. (2011) Medical Device Reprocessing: A Regulatory Model Proposal for Brazilian Hospitals. Revista da Escola de Enfermagem da USP, 45, 1459-1465. https://doi.org/10.1590/S0080-62342011000600026
[29]
Reddy, L.H., Arias, J.L., Nicolas, J. and Couvreur, P. (2012) Magnetic Nanoparticles: Design and Characterization, Toxicity and Biocompatibility, Pharmaceutical and Biomedical Applications. Chemical Reviews, 112, 5818-5878. https://doi.org/10.1021/cr300068p
[30]
Sinn, S., Scheuermann, T., Deichelbohrer, S., Ziemer, G. and Wendel, H.P. (2011) A Novel in Vitro Model for Preclinical Testing of the Hemocompatibility of Intravascular Stents According to ISO 10993-4. Journal of Materials Science: Materials in Medicine, 22, 1521-1528. https://doi.org/10.1007/s10856-011-4335-2
[31]
He, Q. and Shi, J. (2011) Mesoporous Silica Nanoparticle Based Nano Drug Delivery Systems: Synthesis, Controlled Drug Release and Delivery, Pharmacokinetics and Biocompatibility. Journal of Materials Chemistry, 21, 5845-5855. https://doi.org/10.1039/c0jm03851b
[32]
Kunzmann, A., Andersson, B., Thurnherr, T., Krug, H., Scheynius, A. and Fadeel, B. (2011) Toxicology of Engineered Nanomedical Devices: Focus on Biocompatibility, Biodistribution and Biodegradation. Biochimica et Biophysica Acta, 1810, 361-373.
[33]
Uboldi, C., Giudetti, G., Broggi, F., Gilliland, D., Ponti, J. and Rossi, F. (2012) Amorphous Silica Nanoparticles Do Not Induce Cytotoxicity, Cell Transformation or Genotoxicity in Balb/3T3 Mouse Fibroblasts. Mutation Research, 745, 11-20.
[34]
Park, M.V., Neigh, A.M., Vermeulen, J.P., de la Fonteyne, L.J., Verharen, H.W., Briedé, J.J., van Loveren, H. and de Jong, W.H. (2011) The Effect of Particle Size on the Cytotoxicity, Inflammation, Developmental Toxicity and Genotoxicity of Silver Nanoparticles. Biomaterials, 32, 9810-9817.
[35]
Kido, H.W. (2011) Biocompatibilidade da vitrocêramica bioativa (Biosilicato): Análises in Vitro e in Vivo [Biocompatibility of Bioactive Vitreous (Biosilicate®): in Vitro Analyzes in Vivo].
[36]
Ke, N., Wang, X., Xu, X. and Abassi, Y.A. (2011) The xCELLigence System for Real-Time and Label-Free Monitoring of Cell Viability. Methods in Molecular Biology, 740, 33-43. https://doi.org/10.1007/978-1-61779-108-6_6
[37]
Zhou, H.M., Shen, Y., Wang, Z.J., Li, L., Zheng, Y.F., H äkkinen, L. and Haapasalo, M. (2013) In Vitro Cytotoxicity Evaluation of a Novel Root Repair Material. Journal of Endodontics, 39, 478-483.
[38]
Severino, P., Santana, M.H.A., Malmonge, S.M. and Souto, E.B. (2011) Polímeros usados como sistemas de transporte de princípios ativos. Polímeros, 21, 361-368. https://doi.org/10.1590/S0104-14282011005000061
[39]
Bauer, M., Lautenschlaeger, C., Kempe, K., Tauhardt, L., Schubert, U.S. and Fischer, D. (2012) Poly (2-ethyl-2-oxazoline) as Alternative for the Stealth Polymer Poly (ethylene glycol): Comparison of in Vitro Cytotoxicity and Hemocompatibility. Macromolecular Bioscience, 12, 986-998. https://doi.org/10.1002/mabi.201200017
[40]
Bruinink, A. and Luginbuehl, R. (2011) Evaluation of Biocompatibility using in Vitro Methods: Interpretation and Limitations. In: Tissue Engineering III: Cell-Surface Interactions for Tissue Culture, Springer, Berlin, Heidelberg, 117-152. https://doi.org/10.1007/10_2011_111
[41]
Sehnem, D.P., de Souza, E.T.G., Benamor, L., de Jesus, L.D.S., de Menezes Valentim, R., Zambuzzi, W.F. and Takamori, E.R. (2012) Métodos alternativos para avaliação da citotoxicidade de biomateriais. Revista Rede de Cuidados em Saúde, 6.
[42]
De Oliveira Marreiro, R., Bandeira, M.F.C.L., de Almeida, M.D.C., Coelho, C.N., Venancio, G.N. and de Oliveira Conde, N.C. (2015) Cytotoxicity Evaluation of a Mouthwash Containing Extract of Libidibia Ferrea. Brazilian Research in Pediatric Dentistry and Integrated Clinic, 14, 34-42.
[43]
Wang, J., Witte, F., Xi, T., Zheng, Y., Yang, K., Yang, Y., Zhao, D., Meng, J., Li, Y., Li, W., Chan, K. and Qin, L. (2015) Recommendation for Modifying Current Cytotoxicity Testing Standards for Biodegradable Magnesium-Based Materials. Acta Biomaterialia, 21, 237-249.
[44]
De Melo, W.M., Maximiano, W.M.A., Antunes, A.A., Beloti, M.M., Rosa, A.L. and de Oliveira, P.T. (2013) Cytotoxicity Testing of Methyl and Ethyl 2-Cyanoacrylate using Direct Contact Assay on Osteoblast Cell Cultures. Journal of Oral and Maxillofacial Surgery, 71, 35-41.
[45]
Northup, S.J. and Cammack, J.N. (1986) Mammalian Cell Culture Models. In: Handbook of Biomaterials Evaluation, Scientific, Technical, and Clinical Testing of Implant Materials, Macmillan, New York, 209-225.
[46]
Rosenbluth, S.A., Guess, W.L., Schmidt, B. and Autian, J. (1965) Agar Diffusion Method for Toxicity Screening of Plastics on Cultured Cell Monolayers. Journal of Pharmaceutical Sciences, 54, 1545-1547. https://doi.org/10.1002/jps.2600540139
[47]
Garcia, S.N., Gutierrez, L. and McNulty, A. (2013) Real-Time Cellular Analysis as a Novel Approach for in Vitro Cytotoxicity Testing of Medical Device Extracts. Journal of Biomedical Materials Research Part A, 101, 2097-2106. https://doi.org/10.1002/jbm.a.34507
[48]
Sastri, V.R. (2013) Plastics in Medical Devices: Properties, Requirements, and Applications. William Andrew.
[49]
Pithon, M.M. (2016) Citotoxicidade in Vitro de elásticos ortodônticos: Comparação entre duas metodologias [In vitro Cytotoxicity of Orthodontic Elastics: Comparison between Two Methodologies]. Saúde. Com. 4.
[50]
Kramer, D.B., Xu, S. and Kesselheim, A.S. (2012) Regulation of Medical Devices in the United States and European Union. The New England Journal of Medicine, 366, 848-855. https://doi.org/10.1056/NEJMhle1113918
[51]
Babich, H. and Borenfreund, E. (1990) Applications of the Neutral Red Cytotoxicity Assay to in Vitro Toxicology. Alternatives to Laboratory Animals: ATLA.