In vitro Antibacterial Efficacy of Bidens pilosa, Ageratum conyzoides and Ocimum suave Extracts against HIV/AIDS Patients’ Oral Bacteria in South-Western Uganda
The objective of the study was to determine the antibacterial efficacy of Bidens pilosa Aqueous (BPA), Bidens pilosa Ethanolic (BPE), Ageratum conyzoides Aqueous (ACA), Ageratum conyzoides Ethanolic (ACE), Ocimum suave Aqueous (OSA) and Ocimum suave Ethanolic (OSE) extracts on HIV/AIDS patients’ oral bacteria. Healthy green leaves of the plants were collected in Ishaka Uganda, processed and portions separately extracted with hot distilled water and cold ethanol. The susceptibility, MIC and MBC of each extract were determined using standard protocols. The bacteria had significant (p < 0.05) respective total susceptibilities of 35 [28.7%] to BPA; 42 [34.4%] to BPE; 61 [50.0%] to ACA; 45 [36.9%] to ACE; 38 [31.1%] to OSA; 32 [26.3%] to OSE; 105 (86.0%)] to ceftriaxone. BPE, ACA, OSA, OSE and ceftriaxone had significant MIC with [F(1, 13); P = 0.00 and BPA with F(1, 13); P = 0.03]. BPE, ACA, ACE, OSA and ceftriaxone had significant MBC with [F(1, 13); P = 0.00 and BPA with F(1, 13); P = 0.01] on the test bacteria (MANOVA). These tested medicinal plants’ extracts and ceftriaxone had significant activity against oral bacteria with ACA having the best activity when compared with the control. However, the plants’ extracts were resisted by some of the bacteria. These findings validate the claims of efficacy of Bidens pilosa, Ageratum conyzoides and Ocimum suave on oral lesions of HIV/AIDS patients made by traditional healers and local people in South-Western Uganda. We recommend a detailed study of structural identities and activities of the active antibacterial principle(s) in these plants for possible new drug entities and verification of the interactive effects of the principle(s) with ARVs and cotrimoxazole used daily by HIV/AIDS patients.
Fennell, C.W., Lindsey, K.L., McGaw, L.J., Sprag, S.G., Staffort, G.I., Elgorashi, E.E., Grace, O.M. and van Staden, J. (2004) Assessing African Medicinal Plants for Efficacy and Safety: Pharmacological Screening and Toxicity. Journal of Ethnopharmacology, 94, 205-217. https://doi.org/10.1016/j.jep.2004.05.012
[3]
Murray, C.J.L. and Lopez, A.D. (1997) Mortality by Cause for Light Regions of the World: Global Burden Disease Study. Lancet, 349, 1269-1276.
https://doi.org/10.1016/S0140-6736(96)07493-4
[4]
Bonfiglio, G., Simporé, J., Pignatelli, S., Musumeci, S. and Solinas, M.L. (2002) Epidemiology of Bacterial Resistance in Gastro-Intestinal Pathogens in a Tropical Area. International Journal of Antimicrobial Agents, 20, 387-389.
https://doi.org/10.1016/S0924-8579(02)00208-X
[5]
Kemajou, T.S., Ajugwo, A.O., Oshoma, C.E. and Enabulele, O.I. (2016) Antibiotic Resistance of Bacterial Isolates from HIV Positive Patients with Urinary Tract Infection (UTI) in Port Harcourt, Nigeria. Journal of AIDS and Clinical Research, 7, 594. https://doi.org/10.4172/2155-6113.1000594
[6]
Agwu, E., Ihongbe, J.C., Ezeonwumelu, J.O.C. and Lodhi, M.M. (2015) Baseline Burden and Antimicrobial Susceptibility of Pathogenic Bacteria Recovered from Oral Lesions of Patients with HIV/AIDS in South-Western Uganda. Oral Science International, 12, 59-66. https://doi.org/10.1016/S1348-8643(15)00018-X
[7]
Ezeonwumelu, J.O.C., Muhammad, N., Iceland, K.K., Ogbonnia, S.O., Tanayen, J.K., Agwu, E., Okonkwo, C.O., Akunne, A.A. and Byarugaba, F. (2016) Resistance, Minimum Inhibitory and Bactericidal Concentration Profiles of Oral Bacteria from HIV/AIDS Patients in South Western Uganda. British Journal of Medicine and Medical Research, 18, 1-14. https://doi.org/10.9734/BJMMR/2016/28491
[8]
Ezeonwumelu, J.O.C., Muhammad, N., Ogbonnia, S.O., Agwu, E., Tanayen, J.K., Kasozi, K.I., Akunne, A.A., Okonkwo, C.O. and Byarugaba, F. (2017) Efficacy of Commercially Used Antibacterial Agents against Oral Bacteria Associated with HIV/AIDS Patients in South Western Uganda. British Journal of Pharmaceutical Research, 16, 1-13. https://doi.org/10.9734/BJPR/2017/33211
[9]
Nielsen, I. (2003) Plant Resources of Tropical Africa 2. In: Grubben, G.J.H. and Denton, O.A., Eds., Nordic Journal of Botany, Blackwell Publishing Ltd., 23, 298.
[10]
Andrade-Neto, V.F., Brandao, M.G., Oliveira, F.Q., Casali, V.W., Njaine, B., Zalis, M.G., Oliveira. L.A. and Krettli, A.U. (2004) Antimalarial Activity of Bidens pilosa L. (Asteraceae) Ethanol Extracts from Wild Plants Collected in Various Localities or Plants Cultivated in Humus Soil. Phytotherapy Research, 18, 634-639.
https://doi.org/10.1002/ptr.1510
[11]
Oliveira, F.Q., Andrade-Neto, V., Krettli, A.U. and Brandao, M.G. (2004) New Evidences of Antimalarial Activity of Bidens pilosa Roots Extract Correlated with Polyacetylene and Flavonoids. Journal of Ethnopharmacology, 93, 39-42.
[12]
Brandao, M.G., Krettli, A.U., Soares, L.S., Nery, C.G. and Marinuzzi, H.C. (1997) Antimalarial Activity of Extracts and Fractions from Bidens pilosa and Other Bidens Species (Asteraceae) Correlated with the Presence of Acetylene and Flavonoid Compound. European Journal of Pharmacology, 57, 131-138.
[13]
Jhansi, P. and Ramanujam, C.G.K. (1987) Pollen Analysis of Extracted and Squeezed Honey of Hyderabad, India. Geophytology, 17, 237-240.
[14]
Shirwaikar, A., Bhilegaonkar, P.M., Malini, S. and Kumar, J.S. (2003) Thegastroprotective Activity of the Ethanol Extract of Ageratum Conyzoides. Journal of Ethnopharmacology, 86, 117-121.
[15]
Durodola, J.J. (1977) Antibacterial Property of Crude Extracts from Herbal Wound Healing Remedy—Ageratum conyzoides. Planta Medica, 32, 388-390.
https://doi.org/10.1055/s-0028-1097620
[16]
Borthakur, N. and Baruah, A.K.S. (1987) Search for Precocenes in Ageratum conyzoides Linn. of North-East India. Journal of Indian Chemical Society, 64, 580-581.
[17]
Ekundayo, O., Sharma, S. and Rao, E.V. (1988) Essential Oil of Ageratum conyzoides. Planta Medica, 54, 55-57. https://doi.org/10.1055/s-2006-962336
[18]
Almagboul, A.Z., Farroq, A.A. and Tyagi, B.R. (1985) Antimicrobial Activity of Certain Sudanese Plants Used in Folkloric Medicine: Screening for Antibacterial Activity, Part II. Fitoterapia, 56, 103-109.
[19]
Brasil, M.S. and de Medicamentos, C. (1989) Ageratum conyzoides. In: Programa de pesquisas de plantasmedicinais: Primeirosresultados, Brasília.
[20]
Jaccoud, R.J.S. (1961) Contribuicao para o estudoformacognóstico do Ageratum conyzoides L. Revista. [Contribution to the pharmacognostic study ofAgeratum conyzoidesL. Revista.] Brasileira de Farmacia, 42, 177-197.
[21]
Labra, M., Miele, M., Ledda, B., Grassi, F., Mazzei, M. and Sala, F. (2004) Morphological Characterization, Essential Oil Composition and DNA Genotyping of Ocimum basilicum L. cultivars. Plant Science, 167, 725-731.
[22]
Singh, N., Nath, R. and Gupta, M.L. (1980) An Experimental Evaluation of Anti-Asthmatic Potential of Inularacemosa. Quarterly Journal of Crude Drug Research, 18, 86-96. https://doi.org/10.3109/13880208009065184
[23]
Kirtikar, K. and Basu, B. (1993) In Indian Medicinal Plants. Periodical Expert Book Agency, New Delhi, 3-6.
[24]
Wagner, H. and Winterhoff, H. (1994) Phytomedicine. 1, 63.
[25]
Warier, P.K. (1995) In Indian Medicinal Plants. Orient Longman, Madras, 48-51.
[26]
Nakamura, C.V., Ueda-Nakamura, T., Bando, E., Melo, A.F., Cortez, D.A. and Dias Filho, B.P. (1999) Antibacterial Activity of Ocimum gratissimum L. Essential Oil. Memórias do Instituto Oswaldo Cruz, 94, 675-678.
https://doi.org/10.1590/S0074-02761999000500022
[27]
Orafidiya, L.O., Oyedele, A.O., Shittu, A.O. and Elujoba, A.A. (2001) The Formulation of an Effective Topical Antibacterial Product Containing Ocimum gratissimum Leaf Essential Oil. International Journal of Pharmaceutics, 224, 177-183.
[28]
Nwosu, M.O. and Okafor, J.I. (1995) Preliminary Studies of the Antifungal Activities of Some Medical Plants against Basidiobolus and Some Other Pathogenic Fungi. Mycoses, 38, 191-195. https://doi.org/10.1111/j.1439-0507.1995.tb00048.x
[29]
Nakamura, C.V., Ishida, K., Faccin, L.C., Filho, B.P.D., Cortez, D.A.G., Rozental, S. and Ueda-Nakamura, T. (2004) In Vitro Activity of Essential Oil from Ocimum gratissimum L. against Four Candida Species. Research in Microbiology, 155, 579-586.
[30]
Lemos, J.A., Passos, X.S., Ferna, O.F.L., Paula, J.R., Ferri, P.H., Souza, L.K.H., et al. (2005) Antifungal Activity from Ocimum gratissimum L. towards Cryptococcus neoformans. Memórias do Instituto Oswaldo Cruz, 100, 55-58.
https://doi.org/10.1590/S0074-02762005000100011
[31]
Sartoratto, A., Machado, A.L.M., Delarmelina, C., Figueira, G.M., Duarte, M.C.T. and Rehder, V.L.G. (2004) Composition and Antimicrobial Activity of Essential Oils from Aromatic Plants used in Brazil. Brazilian Journal of Microbiology, 35, 4.
https://doi.org/10.1590/S1517-83822004000300001
[32]
Pessoa, L.M., Morais, S.M., Bevilaqua, C.M.L. and Luciano, J.H.S. (2002) Anthelmintic Activity of Essential Oil of Ocimum gratissimum Linn. and Eugenol against Haemonchuscontortus. Veterinary Parasitology, 109, 59-63.
[33]
Silva, M.R., Oliveira, J.G., Fernandes, O.F., Passos, X.S., Costa, C.R., Souza, L.K., Lemos, J.A. and Paula, J.R. (2005) Antifungal Activity of Ocimum gratissimum towards Dermatophytes. Mycoses, 48, 172-175.
https://doi.org/10.1111/j.1439-0507.2005.01100.x
[34]
Cheesbrough, M. (2006) District Laboratory Practice in Tropical Countries. 1.
[35]
Hewitt, D.J., McDonald, M., Portenoy, R.K., Rosenfeld, B., Passik, S. and Breitbart, W. (1997) Pain Syndromes and Etiologies in Ambulatory AIDS Patients. Pain, 70, 117-123.
[36]
Andrews, J.M. (2001) Determination of Minimum Inhibitory Concentrations. Journal of Antimicrobial Chemotherapy, 48, 5-16.
https://doi.org/10.1093/jac/48.suppl_1.5
[37]
Yilmaz, M.T. (2012) Minimum Inhibitory and Minimum Bactericidal Concentrations of Boron Compounds against Several Bacterial Strains. Turkish Journal of Medical Science, 42, 1423-1429.
[38]
Hadacek, F. and Greger, H. (2000) Testing of Antifungal Natural Products: Methodologies, Comparability of Results and Assay Choice. Phytochemical Analysis, 11, 137-147.
https://doi.org/10.1002/(SICI)1099-1565(200005/06)11:3<137::AID-PCA514>3.0.CO;2-I
[39]
Cos, P., Vlietinck, A.J., Berghe, D.V. and Maes, L. (2006) Anti-Infective Potential of Natural Products: How to Develop a Stronger in Vitro “Proof-of-Concept”. Journal of Ethnopharmacology, 106, 290-302.
[40]
CLSI Document M100-S23 (M02-A11) (2000) “Disc Diffusion Supplemental Tables” Performance Standards for Antimicrobial Susceptibility Testing. Clinical and Laboratory Standards Institute, Wayne.
Abdelkader, H., Salah, C. and Nadjib, C. (2015) Synthesis, Antibacterial and Antifungal Screening of Three New of Alpha-Aminophosphonic Acids. International Journal of Science and Engineering Research, 6, 1622-1627.
[43]
Scalbert, A. (1991) Antimicrobial Properties of Tannins. Phytochemistry, 30, 3875-3883.
[44]
Gollapudi, S., Sharma, H.A., Aggarwal, S., Byers, L.D., Ensley, H.E. and Gupta, S. (1995) Isolation of Previously Unidentified Polysaccharide (MAR-10) from Hyssop officinalis That Exhibits Strong Activity against HIV Type 1. Biochemistry and Biophysics Research Community, 210, 145-151.
https://doi.org/10.1006/bbrc.1995.1639
[45]
Karou, D., Dicko, M.H., Simpore, J. and Traore, A.S. (2005) Antioxidant and Antibacterial Activities of Polyphenols from Ethnomedicinal Plants of Burkina Faso. African Journal of Biotechnology, 4, 823-828.
[46]
Perez, C., Pauli, M. and Bazerque, P. (1990) An Antibiotic Assay by the Agar-Well Diffusion Method. Acta Biologiaeet Medecine Experimentalis, 15, 113-115.
[47]
Kelmanson, G.E., Jager, A.K. and van Staden, J. (2000) Zulu Medicinal Plants with Antibacterial Activity. Journal of Ethnopharmacology, 69, 241-246.
[48]
Massika, P.J. and Afolayan, A.J. (2002) Antimicrobial Activity of Some Plants used for the Treatment of Livestock Diseases in the Eastern Cape, South Africa. Journal of Ethnopharmacology, 83, 129-134.
[49]
Scherrer, R. and Gerhardt, P. (1971) Molecular Sieving by the Bacillummegaterium Cell Wall and Protoplast. Journal of Bacteriology, 107, 718-735.
[50]
Nikaido, H. and Vaara, M. (1985) Molecular Basis of Bacterial Outer Membrane Permeability. Microbiology Review, 1, 1-32.