全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Engineering  2017 

Turbulence Modelling of a Single-Phase Flow Cyclone Gasifier

DOI: 10.4236/eng.2017.99047, PP. 779-799

Keywords: Cyclone Gasifier, Turbulence Modelling, Swirling Flow Pattern, Secondary Flow

Full-Text   Cite this paper   Add to My Lib

Abstract:

The current work aims to make a foundation for an engineering design of a cyclone gasifier to be able not only to predict its flow field with a suitable accuracy but also to investigate a large number of design alternatives with limited computer resources. A good single-phase flow model that can form the basis in an Euler-Lagrange model for multi-phase flow is also necessaryfor modelling the reacting flow inside a cyclone gasifier. The present paper provides an objective comparison between several popular turbulence modelling options including standard k-ε and SST with curvature corrections, SSG-RSM and LES Smagorinsky models, for the single-phase flow inside cyclone separators/gasifiers that can serve as a guide for further work on the reacting multi-phase flow inside cyclone gasifiers and similar devices. A detailed comparison between the models and experimental data for the mean velocity and fluctuating parts of the velocity profiles are presented. Furthermore, the capabilities of the turbulence models to capture the physical phenomena present in a cyclone gasifier thataffects the design process are investigated.

References

[1]  Risberg, M., Ohrman, O.G.W., Gebart, B.R., Nilsson, P.T., Gudmundsson, A. and Sanati, M. (2014) Influence from Fuel Type on the Performance of an Air-Blown Cyclone Gasifier. Fuel, 116, 751-759.
https://doi.org/10.1016/j.fuel.2013.08.008
[2]  Gabra, M., Pettersson, E., Backman, R. and Kjellstrom, B. (2001) Evaluation of Cyclone Gasifier Performance for Gasification of Sugar Cane Residue—Part 1: Gasification of Bagasse. Biomass and Bioenergy, 21, 351-369.
https://doi.org/10.1016/S0961-9534(01)00043-5
[3]  Gabra, M., Pettersson, E., Backman, R. and Kjellstrom, B. (2001) Evaluation of Cyclone Gasifier Performance for Gasification of Sugar Cane Residue—Part 2: Gasification of Cane Trash. Biomass and Bioenergy, 21, 371-380.
https://doi.org/10.1016/S0961-9534(01)00044-7
[4]  Zhao, Y., Sun, S., Che, H., Guo, Y. and Gao, C. (2012) Characteristics of Cyclone Gasification of Rice Husk. International Journal of Hydrogen Energy, 37, 16962-16966.
https://doi.org/10.1016/j.ijhydene.2012.08.093
[5]  Guo, X.J., Xiao, B., Zhang, X.L., Luo, S.Y. and He, M.Y. (2009) Experimental Study on Air-Stream Gasification of Biomass Micron Fuel (BMF) in a Cyclone Gasifier. Bioresource Technology, 100, 1003-1006.
https://doi.org/10.1016/j.biortech.2008.07.007
[6]  Zhao, Y., Sun, S., Zhang, T. and Zhou, H. (2013) Experimental Research on Fuel Staging Cyclone Gasification of Wood Powder. Fuel, 103, 53-57.
https://doi.org/10.1016/j.fuel.2011.08.020
[7]  Risberg, M., Carlsson, P. and Gebart, R. (2015) Numerical Modeling of a 500 kW Air-Blown Cyclone Gasifier. Applied Thermal Engineering, 90, 694-702.
https://doi.org/10.1016/j.applthermaleng.2015.06.056
[8]  Risberg, M. (2013) Entrained Flow Gasification of Biomass: On Atomisation, Transport Processes and Gasification Reactions. Ph.D. Thesis, Lulea University of Technology, Lulea.
[9]  Barth, W. (1955) Der Einfluß Der Vorgange in Der Grenzschicht Auf Die Abscheideleistung von Mechanischen Staubabscheidern, Staubbewegungen in Der Grenzschicht. VDIBer, 6, 20-32.
[10]  Muschelknautz, E. and Brunner, K. (1967) Untersuchungen an Zyklonen. Chemie Ingenieur Technik-CIT, 39, 531-538.
https://doi.org/10.1002/cite.330390908
[11]  Hoffmann, A. and Stein, L. (2008) Gas Cyclones and Swirl Tubes: Principles, Design and Operation. Springer-Verlag, Berlin, Heidelberg.
[12]  Boysan, F., Ayers, W.H. and Swithenbank, J. (1982) A Fundamental Mathematical Modelling Approach to Cyclone Design. Chemical Engineering Research and Design, 60a, 222-230.
[13]  Meier, H.F. and Mori, M. (1999) Anisotropic Behavior of the Reynolds Stress in Gas and Gas-Solid Flows in Cyclones. Powder Technology, 101, 108-119.
https://doi.org/10.1016/S0032-5910(98)00162-4
[14]  Minier, J., Simonin, O. and Gabillard, M. (1991) Numerical Modelling of Cyclone Separators. Proceedings of the International Conference on Fluidized Bed Combustion, Quebec.
[15]  Hoekstra, A.J., Derksen, J.J. and Van Den Akker, H.E.A. (1999) An Experimental and Numerical Study of Turbulent Swirling Flow in Gas Cyclones. Chemical Engineering Science, 54, 2055-2065.
https://doi.org/10.1016/S0009-2509(98)00373-X
[16]  Shukla, S.K., Shukla, P. and Ghosh, P. (2011) Evaluation of Numerical Schemes for Dispersed Phase Modeling of Cyclone Separators. Engineering Applications of Computational Fluid Mechanics, 5, 235-246.
https://doi.org/10.1080/19942060.2011.11015367
[17]  Derksen, J.J., Van den Akker, H.E.A. and Sundaresan, S. (2008) Two-Way Coupled Large-Eddy Simulations of the Gas-Solid Flow in Cyclone Separators. AIChE Journal, 54, 872-885.
https://doi.org/10.1002/aic.11418
[18]  Dhakal, T.P., Walters, D.K. and Strasser, W. (2014) Numerical Study of Gas-Cyclone Airflow: An Investigation of Turbulence Modelling Approaches. International Journal of Computational Fluid Dynamics, 28, 1-15.
https://doi.org/10.1080/10618562.2013.878800
[19]  Gronald, G. and Derksen, J.J. (2011) Simulating Turbulent Swirling Flow in a Gas Cyclone: A Comparison of Various Modeling Approaches. Powder Technology, 205, 160-171.
https://doi.org/10.1016/j.powtec.2010.09.007
[20]  Misiulia, D., Andersson, A.G. and Lundstrom, T.S. (2015) Computational Investigation of an Industrial Cyclone Separator with Helical-Roof Inlet. Chemical Engineering & Technology, 38, 1425-1434.
https://doi.org/10.1002/ceat.201500181
[21]  Shalaby, H., Wozniak, K. and Wozniak, G. (2008) Numerical Calculation of Particle-Laden Cyclone Separator Flow Using Les. Engineering Applications of Computational Fluid Mechanics, 2, 382-392.
https://doi.org/10.1080/19942060.2008.11015238
[22]  Schlichting, H. and Gersten, K. (2000) Boundary-Layer Theory. Springer, Berlin.
https://doi.org/10.1007/978-3-642-85829-1
[23]  Shepherd, C.B. and Lapple, C.E. (1939) Flow Pattern and Pressure Drop in Cyclone Dust Collectors. Industrial & Engineering Chemistry, 31, 972-984.
https://doi.org/10.1021/ie50356a012
[24]  Peng, W., Hoffmann, A., Boot, P.J.A., Udding, A., Dries, H.W., Ekker, A. and Kater, J. (2002) Flow Pattern in Reverse-Flow Centrifugal Separators. Powder Technology, 127, 212-222.
https://doi.org/10.1016/S0032-5910(02)00148-1
[25]  Yazdabadi, P.A., Griffiths, A.J. and Syred, N. (1994) Characterization of the PVC Phenomena in the Exhaust of a Cyclone Dust Separator. Experiments in Fluids, 17, 84-95.
https://doi.org/10.1007/BF02412807
[26]  Hoekstra, A.J., Vliet, E., Derksen, J.J. and Akker, H.E.A. (1998) Vortex Core Precession in a Gas Cyclone. Advances in Turbulence VII, 289-292.
https://doi.org/10.1007/978-94-011-5118-4_71
[27]  Smith, J.L. (1962) An Experimental Study of the Vortex in the Cyclone Separator. Journal of Basic Engineering, 84, 602.
https://doi.org/10.1115/1.3658721
[28]  Derksen, J.J. and Van den Akker, H.E.A. (2000) Simulation of Vortex Core Precession in a Reverse-Flow Cyclone. AIChE Journal, 46, 1317-1331.
https://doi.org/10.1002/aic.690460706
[29]  Obermair, S., Woisetschlager, J. and Staudinger, G. (2003) Investigation of the Flow Pattern in Different Dust Outlet Geometries of a Gas Cyclone by Laser Doppler Anemometry. Powder Technology, 138, 239-251.
https://doi.org/10.1016/j.powtec.2003.09.009
[30]  Ferziger, J. H. and Peric, M. (2002) Computational Methods for Fluid Dynamics. Springer Berlin Heidelberg, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-642-56026-2
[31]  Launder, B.E. and Spalding, D.B. (1974) The Numerical Computation of Turbulent Flows. Computer Methods in Applied Mechanics and Engineering, 3, 269-289.
https://doi.org/10.1016/0045-7825(74)90029-2
[32]  Menter, F.R. (1994) Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA Journal, 32, 1598-1605.
https://doi.org/10.2514/3.12149
[33]  Spalart, P.R. and Shur, M. (1997) On the Sensitization of Turbulence Models to Rotation and Curvature. Aerospace Science and Technology, 1, 297-302.
https://doi.org/10.1016/S1270-9638(97)90051-1
[34]  ANSYS CFX-Solver Theory Guide (2013) Release 14.5. ANSYS Inc., Canonsburg.
[35]  Launder, B.E., Reece, G.J. and Rodi, W. (1975) Progress in the Development of a Reynolds-Stress Turbulence Closure. Journal of Fluid Mechanics, 68, 537-566.
https://doi.org/10.1017/S0022112075001814
[36]  Speziale, C.G., Sarkar, S. and Gatski, T.B. (2006) Modelling the Pressure-strain Correlation of Turbulence: An Invariant Dynamical Systems Approach. Journal of Fluid Mechanics, 227, 245.
https://doi.org/10.1017/S0022112091000101
[37]  Wilcox, D.C. (1998) Turbulence Modeling for CFD. 2nd Edition, DCW Industries, La Canada, California.
[38]  Shalaby, H.H. (2006) On the Potential of Large Eddy Simulation to Simulate Cyclone Separators. Ph.D., Thesis, Chemnitz University of Technology, Chemnitz.
[39]  Schmitt, F.G. (2007) About Boussinesq’s Turbulent Viscosity Hypothesis: Historical Remarks and a Direct Evaluation of Its Validity. Comptes Rendus Mécanique, 335, 617-627.
https://doi.org/10.1016/j.crme.2007.08.004
[40]  Smagorinsky, J. (1963) General Circulation Experiments with the Primitive Equations. Monthly Weather Review, 91, 99-164.
https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
[41]  Lilly, D.K. (1992) A Proposed Modification of the Germano Subgrid-Scale Closure Method. Physics of Fluids A: Fluid Dynamics, 4, 633.
https://doi.org/10.1063/1.858280
[42]  Germano, M., Piomelli, U., Moin, P. and Cabot, W.H. (1991) A Dynamic Subgrid-Scale Eddy Viscosity Model. Physics of Fluids A: Fluid Dynamics, 3, 1760.
https://doi.org/10.1063/1.857955
[43]  Sagaut, P. (2006) Large Eddy Simulation for Incompressible Flows. Springer-Verlag, Berlin, Heidelberg.
[44]  Ferziger, J. and Peric, M. (2013) Computational Methods for Fluid Dynamics. Springer-Verlag, Berlin, Heidelberg.
[45]  ANSYS CFX-Solver Modeling Guide (2013) Release 14.5. ANSYS Inc., Canonsburg.
[46]  Musa, O., Xiong, C., Changsheng, Z. and Lunkun, G. (2016) Assessment of the Modified Rotation/curvature Correction SST Turbulence Model for Simulating Swirling Reacting Unsteady Flows in a Solid-Fuel Ramjet Engine. Acta Astronautica, 129, 241-252.
https://doi.org/10.1016/j.actaastro.2016.09.016
[47]  Musa, O., Changsheng, Z., Xiong, C. and Lunkun, G. (2016) Prediction of Swirling Cold Flow in a Solid-Fuel Ramjet Engine with a Modified Rotation/Curvature Correction SST Turbulence Model. Applied Thermal Engineering, 105, 737-754.
https://doi.org/10.1016/j.applthermaleng.2016.03.091
[48]  Cortés, C. and Gil, A. (2007) Modeling the Gas and Particle Flow inside Cyclone Separators. Progress in Energy and Combustion Science, 33, 409-452.
https://doi.org/10.1016/j.pecs.2007.02.001

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133