全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Design and Modeling of S Band Circular Patch and Ka Band Horn Antenna, Integration with Future Multifunctional Radio over Fiber Network

DOI: 10.4236/ojapr.2017.53010, PP. 121-131

Keywords: Radio over Fiber, S-Band, Ka-Band, March Zehnder Modulator, CW Laser

Full-Text   Cite this paper   Add to My Lib

Abstract:

Radio over Fiber is an integration of microwave and optical fiber technologies having numerous benefits. RoF technology can give a scope of advantages including the capacity for backing multiple radio services and standards. In coming future, there is need of integrated wireless service with high speed satellite broadband and multifunctional indoor/outdoor antennas. Radio over fiber is one of the most favorite candidates to meet all these requirements of future multifunctional integrated wireless communication. Due to planer profile, small size and low cost patch antennas are most favorite to use for multi- frequency applications. In this paper, we present system level design for future multifunctional radio over fiber network. Under FTTH (Fiber To The Home) technology, it will be possible to use multi-frequency applications on single fiber medium. Firstly, we designed S band circular patch antenna (2.5 GHz) and Ka band (29 GHz) horn antenna. Circular patch antenna performance is estimated with different substrate height. After getting S parameters and far-field results, we did modeling of Radio over Fiber system over (10 Km) with same parameters from antenna results.

References

[1]  Liu, J., Beals, M., Pomerene, A., Bernardis, S., Sun, R., Cheng, J., et al. (2008) Waveguide-Integrated, Ultralow-Energy GeSi Electro-Absorption Modulators. Nature Photonics, 2, 433-437. https://doi.org/10.1038/nphoton.2008.99
[2]  Kajima, S., Tsukamoto, K. and Komaki, S. (1996) Proposal of Fiber-Optic Radio Highway Networks Using CDMA Method. IEICE Transactions on Electronics, 79, 111-117.
[3]  Way, W. (1993) Optical Fiber-Based Microcellular Systems: An Overview (Special Issue on Fiber-Optic Microcelluler Radio Communication System and Their Technologies). IEICE Transactions on Communications, 76, 1091-1102.
[4]  Kashif, R. and Lin, F. (2015) Signal Integrity Problems in Electronic Designing. Microwave Conference (APMC), Asia-Pacific, Nanjing, 6-9 December 2015, 1-3.
https://doi.org/10.1109/APMC.2015.7412979
[5]  Al-Raweshidy, H. and Komaki, S. (2002) Radio over Fiber Technologies for Mobile Communications Networks: Artech House.
[6]  Karthikeyan, R. and Prakasam, S. (2013) A Survey on Radio over Fiber (RoF) for Wireless Broadband Access Technologies. International Journal of Computer Applications, 64, 14-19.
[7]  Lach, E., Schuh, K. and Schmidt, M. (2005) Application of Electroabsorption Modulators for High-Speed Transmission Systems. Ultrahigh-Speed Optical Transmission Technology, Springer, New York, 347-377. https://doi.org/10.1007/s10297-005-0032-6
[8]  Ji, W. and Chang, J. (2013) Design of WDM-RoF-PON for Wireless and Wire-Line Access with Source-Free ONUs. Journal of Optical Communications and Networking, 5, 127-133.
https://doi.org/10.1364/JOCN.5.000127
[9]  Jiang, W.-J., Lin, C.-T., Shih, P.-T., He, L.-Y.W., Chen, J. and Chi, S. (2010) Simultaneous Generation and Transmission of 60-GHz Wireless and Baseband Wireline Signals with Uplink Transmission Using an RSOA. IEEE Photonics Technology Letters, 22, 1099-1101. https://doi.org/10.1109/LPT.2010.2050466
[10]  Hsueh, Y.-T., Jia, Z., Chien, H.-C., Yu, J. and Chang, G.-K. (2009) A Novel Bidirectional 60-GHz Radio-Over-Fiber Scheme with Multiband Signal Generation Using a Single Intensity Modulator. IEEE Photonics Technology Letters, 21, 1338-1340. https://doi.org/10.1109/LPT.2009.2026061
[11]  Hsueh, Y.-T., Huang, M.-F., Fan, S.-H. and Chang, G.-K. (2011) A Novel Lightwave Centralized Bidirectional Hybrid Access Network: Seamless Integration of RoF with WDM-OFDM-PON. IEEE Photonics Technology Letters, 23, 1085-1087. https://doi.org/10.1109/LPT.2011.2156402
[12]  Ma, J., Yu, J., Yu, C., Xin, X., Zeng, J. and Chen, L. (2007) Fiber Dispersion Influence on Transmission of the Optical Millimeter-Waves Generated using LN-MZM Intensity Modulation. Journal of Lightwave Technology, 25, 3244-3256. https://doi.org/10.1109/JLT.2007.907794
[13]  Jia, Z., Yu, J., Ellinas, G. and Chang, G.-K. (2007) Key Enabling Technologies for Optical-Wireless Networks: Optical Millimeter-Wave Generation, Wavelength Reuse, and Architecture. Journal of Lightwave Technology, 25, 3452-3471. https://doi.org/10.1109/JLT.2007.909201
[14]  Li, H., Hajipour, J., Attar, A. and Leung, V.C. (2011) Efficient HetNet Implementation using Broadband Wireless Access with Fiber-Connected Massively Distributed Antennas Architecture. IEEE Wireless Communications, 18, 72-78.
[15]  Chang, G.-K., Jia, Z., Yu, J., Chowdhury, A., Wang, T. and Ellinas, G. (2008) Super Broadband Optical Wireless Access Technologies. Optical Fiber Communication Conference, OThD1.
https://doi.org/10.1109/OFC.2008.4528441
[16]  Sauer, M., Kobyakov, A. and George, J. (2007) Radio over Fiber for Picocellular Network Architectures. Journal of Lightwave Technology, 25, 3301-3320.
https://doi.org/10.1109/JLT.2007.906822
[17]  Shinde, P.N. and Shinde, J.P. (2015) Design of Compact Pentagonal Slot Antenna with Bandwidth Enhancement for Multiband Wireless Applications. AEU-International Journal of Electronics and Communications, 69, 1489-1494.
[18]  Shinde, J.P. and Shinde, P.N. (2016) M-Shape Electromagnetic-Bandgap Structures for Enhancement in Antenna Performance. AEU-International Journal of Electronics and Communications, 70, 842-849.
[19]  Doraisingam, Y. (2007) Bandwidth Enhancement of Microstrip Antenna for Wireless Local Area Network Applications. School of Graduate Studies, Universiti Putra Malaysia.
[20]  Shen, L., Long, S., Allerding, M. and Walton, M. (1977) Resonant Frequency of a Circular Disc, Printed-Circuit Antenna. IEEE Transactions on Antennas and Propagation, 25, 595-596. https://doi.org/10.1109/TAP.1977.1141643
[21]  Derneryd, A. (1979) Analysis of the Microstrip Disk Antenna Element. IEEE Transactions on Antennas and Propagation, 27, 660-664. https://doi.org/10.1109/TAP.1979.1142159
[22]  Long, S. and Walton, M. (1979) A Dual-Frequency Stacked Circular-Disc Antenna. IEEE Transactions on Antennas and Propagation, 27, 270-273.
https://doi.org/10.1109/TAP.1979.1142078
[23]  Fonseca, S.D.A. and Giarola, A. (1984) Microstrip Disk Antenna, Part 1: Efficiency of Space Wave Launching. IEEE Transactions on Antennas and Propagation, 32, 561-567.
[24]  Fonseca, S.D.A. and Giarola, A. (1984) Microstrip Disk Antennas, Part II: The Problem of Surface Wave Radiation by Dielectric Truncation. IEEE Transactions on Antennas and Propagation, 32, 568-573.
[25]  Aberle, J.T. and Zavosh, F. (1994) Analysis of Probe-Fed Circular Microstrip Patches Backed by Circular Cavities. Electromagnetics, 14, 239-258. https://doi.org/10.1080/02726349408908382
[26]  Zavosh, F. and Aberle, J.T. (1994) Infinite Phased Arrays of Cavity-Backed Patches. IEEE Transactions on Antennas and Propagation, 42, 390-398. https://doi.org/10.1109/8.280726
[27]  Aberle, J.T. and Pozar, D.M. (1990) Analysis of Infinite Arrays of One- and Two-Probe-Fed Circular Patches. IEEE Transactions on Antennas and Propagation, 38, 421-432.
https://doi.org/10.1109/8.52260
[28]  Kaufman, C. (1995) Rocky Mountain Research Lab. Private Communication, Boulder.
[29]  Lai, T., Mahadi, W.N.L. and Soin, N. (2008) Circular Patch Microstrip Array Antenna for Ku-Band. World Academy of Science, Engineering and Technology, 48, 298-302.
[30]  Balanis, C.A. (2016) Antenna Theory: Analysis and Design. John Wiley & Sons.
[31]  Dwivedi, S., Rawat, A. and Yadav, R.N. (2013) Design of U-Shape Microstrip Patch Antenna for WiMAX Applications at 2.5 GHz. 10th International Conference on Wireless and Optical Communications Networks, 1-5.
[32]  Koutinos, A.G., Ioannopoulos, G.A., Chryssomallis, M.T., Kyriacou, G.A. and Caratelli, D. (2017) Bandwidth Enhancement of a Supershape Patch Antenna using Multiple Feeding Technique. International Workshop on Antenna Technology: Small Antennas, Innovative Structures, and Applications, 211-214. https://doi.org/10.1109/IWAT.2017.7915360

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133