In this paper we investigate the power allocation optimization for spectrum efficient multi-pair two-way massive MIMO (TWMM) amplify-and-forward (AF) full-duplex (FD) relay over Ricean fading channels, where multiple user-pairs exchange information within pair through a AF-FD relay with very large number of antennas, while each user equipped with a single antenna. First, the zeroforcing reception/zeroforcing transmission and maximum-ratio combining/maximum ratio transmission processing matrices with imperfect channel state information at the relay are presented. Then, the unified asymptotic signal-to-interference-plus-noise ratio (SINR) expression of the system at general power scaling schemes are investigates. Finally, the joint user-relay power allocation (JURPA) scheme is proposed to improve the spectral efficiency of TWMM-AF-FD relay system. Simulation results show that the proposed JURPA scheme outperforms traditional user-side only power allocation scheme.
References
[1]
Marzetta, T.L. (2010) Noncooperative Cellular Wireless with Unlimited Numbers of BS Antennas. IEEE Transactions on Wireless Communications, 9, 3590-3600.
https://doi.org/10.1109/TWC.2010.092810.091092
[2]
Ngo, H.Q., Larsson, E.G. and Marzetta, T.L. (2013) Energy and Spectral Efficiency of Very Large Multiuser MIMO Systems. IEEE Transactions on Communications, 61, 1436-1449. https://doi.org/10.1109/TCOMM.2013.020413.110848
[3]
Hoydis, J., Brink, S., and Debbah, M. (2013) Massive MIMO in UL/DL of Cellular Networks: How Many Antennas Do We Need? IEEE Journal on Selected Areas in Communica-tions, 31, 160-171. https://doi.org/10.1109/JSAC.2013.130205
[4]
Zhang, J., Wen, C.K., Jin, S., Gao, X. and Wong, K. (2013) On Capacity of Large Scale MIMO Multiple Access Channels with Distributed Sets of Correlated Antennas. IEEE Journal on Selected Areas in Communications, 31, 133-148.
https://doi.org/10.1109/JSAC.2013.130203
[5]
Sun, X., Xu, K., Xie, W. and Xu, Y. (2016) Multi-Pair Two-Way Massive MIMO AF Relaying with MRC/MRT and Imperfect CSI. 2016 IEEE/CIC International Conference on Communica-tions in China (ICCC), Chengdu, 27-29 July 2016, 1-6.
https://doi.org/10.1109/ICCChina.2016.7636719
[6]
You, L., Gao, X., Xia, X.G., Ma, N. and Peng, Y. (2015) Pilot Reuse for Massive MIMO Transmission over Spatially Correlated Rayleigh Fading Channels. IEEE Transactions on Wire-less Communications, 14, 3352-3366.
https://doi.org/10.1109/TWC.2015.2404839
[7]
Jin, S., Liang, X., Wong, K.K., Gao, X. and Zhu, Q. (2015) Ergodic Rate Analysis for Multipair Massive MIMO Two-Way Relay Networks. IEEE Transactions on Wireless Communica-tions, 14, 1480-1491. https://doi.org/10.1109/TWC.2014.2367503
[8]
Adhikary, A., Nam, J., Ahn, J.-Y. and Caire, G. (2013) Joint Spatial Division and Multiplexing: The Large-Scale Array Regime. IEEE Transactions on Information Theory, 59, 6441-6463. https://doi.org/10.1109/TIT.2013.2269476
[9]
Sun, C., Gao, X., Jin, S., Matthaiou, M., Ding, Z. and Xiao, C. (2015) Beam Division Multiple Access Transmission for Massive MIMO Communications. IEEE Transactions on Com-munications, 63, 2170-2184.
https://doi.org/10.1109/TCOMM.2015.2425882
[10]
Sabharwal, A., Schniter, P., Guo, D., Bliss, D.W., Rangarajan, S. and Wichman, R. (2014) In-Band Full-Duplex Wireless: Challenges and Opportunities. IEEE Journal on Selected Areas in Communications, 32, 1637-1652.
https://doi.org/10.1109/JSAC.2014.2330193
[11]
Ngo, H.Q., Suraweera, H.A., Matthaiou, M. and Larsson, E.G. (2014) Multipair Full-Duplex Relaying with Massive Arrays and Linear Processing. IEEE Journal on Selected Areas in Com-munications, 32, 1721-1737.
https://doi.org/10.1109/JSAC.2014.2330091
[12]
Zheng, G. (2015) Joint Beamforming Optimization and Power Control for Fullduplex MIMO Two-Way Relay Channel. IEEE Transactions on Signal Processing, 63, 555-566. https://doi.org/10.1109/TSP.2014.2376885
[13]
Jang, Y., Min, K., Park, S. and Choi, S. (2015) Spatial Resource Utilization to Maximize Uplink Spectral Ef-ficiency in Full-Duplex Massive MIMO. 2015 IEEE International Conference on Communications (ICC), London, 8-12 June 2015, 1583-1588.
https://doi.org/10.1109/ICC.2015.7248550
[14]
Mai, R., Nguyen, D.H.N. and Le-Ngoc, T. (2016) Joint MSE-Based Hybrid Precoder and Equalizer Design for Full-Duplex Massive MIMO Systems. 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, 22-27 May 2016, 1-6.
https://doi.org/10.1109/ICC.2016.7511185
[15]
Sun, X., Xu, K., Ma, W., Xu, Y., Xia, X. and Zhang, D. (2016) Multi-Pair Two-Way Massive MIMO AF Full-Duplex Relaying with Imperfect CSI over Ricean Fading Channels. IEEE Ac-cess, 4, 4933-4945.
https://doi.org/10.1109/ACCESS.2016.2595590
[16]
Zhang, Z., Chen, Z., Shen, M., Xia, B. and Luo, L. (2015) Achievable Rate Analysis for Multi-Pair Two-Way Massive MIMO Full-Duplex Relay Systems. Proceedings of IEEE Inter-national Symposium on Information Theory, Hong Kong, 14-19 June 2015, 2598-2602. https://doi.org/10.1109/ISIT.2015.7282926
[17]
Zhang, Q., Jin, S., Wong, K.-K., Zhu, H. and Matthaiou, M. (2014) Power Scaling of Uplink Mas-sive MIMO Systems with Arbitrary-Rank Channel Means. IEEE Journal of Se-lected Topics in Signal Processing, 8, 966-981.
https://doi.org/10.1109/JSTSP.2014.2324534
[18]
Cui, H., Song, L. and Jiao, B. (2014) Multi-Pair Two-Way Amplify-and-Forward Relaying with Very Large Number of Relay Antennas. IEEE Transactions on Wireless Communications, 13, 2636-2645.
https://doi.org/10.1109/TWC.2014.032514.130885
[19]
Weeraddana, P.C., Codreanu, M., Latva-Aho, M. and Ephremides, A. (2011) Resource Allocation for Cross-Layer Utility Maximization in Wireless Networks. IEEE Transactions on Vehicular Technology, 60, 2790-2809.
https://doi.org/10.1109/TVT.2011.2157544