Microbial communities and enzyme activities are the main players during municipal solid waste (MSW) composting, but the relationship between microbial communities (i.e., mesophilic and thermophilic ones) and enzyme activities (i.e., dehydrogenase, β-glucosidase, phosphatase and urea) has not been well studied. Therefore, the objective of this work is to determine the enzymes profiles during municipal solid waste (MSW) composting and study the relationship between the mesophilic and thermophilic microbial profiles and enzyme activities. MSW was composted in a bench-scale composting reactor. Parameters including temperature, oxygen uptake rate, numbers of microbial populations (mesophilic and thermophilic bacteria and fungi) and enzyme activities were measured. Results showed higher dehydrogenase activities are related to higher numbers of mesophilic bacteria, while higher phosphatase and urea activities are associated with higher numbers of thermophilic fungi and mesophilic bacteria at the later stage of composting. In addition, results of the correlation analysis indicated significant correlations among enzyme activities and microbial population.
References
[1]
Vargas-Garcia, M., Suárez-Estrella, F., Lopez, M. and Moreno, J. (2010) Microbial Population Dynamics and Enzyme Activities in Composting Processes with Different Starting Materials. Waste Management, 30, 771-778.
[2]
Liu, D., Zhang, R., Wu, H., Xu, D., Tang, Z., Yu, G., et al. (2011) Changes in Biochemical and Microbiological Parameters during the Period of Rapid Composting of Dairy Manure with Rice Chaff. Bioresource Technology, 102, 9040-9049.
[3]
Raut, M., Prince William, S., Bhattacharyya, J., Chakrabarti, T. and Devotta, S. (2008) Microbial Dynamics and Enzyme Activities during Rapid Composting of Municipal Solid Waste—A Compost Maturity Analysis Perspective. Bioresource Technology, 99, 6512-6519. https://doi.org/10.1016/j.biortech.2007.11.030
[4]
Mondini, C., Fornasier, F. and Sinicco, T. (2004) Enzymatic Activity as a Param-eter for the Characterization of the Composting Process. Soil Biology and Biochemistry, 36, 1587-1594. https://doi.org/10.1016/j.soilbio.2004.07.008
[5]
Ryckeboer, J., Mergaert, J., Vaes, K., Klammer, S., De Clercq, D., Coosemans, J., et al. (2003) A Survey of Bacteria and Fungi Occurring during Composting and Self- Heating Processes. Annals of Microbiology, 53, 349-410.
[6]
Ryckeboer, J., Mergaert, J., Coosemans, J., Deprins, K. and Swings, J. (2003) Microbiological Aspects of Biowaste during Composting in a Monitored Compost Bin. Journal of Applied Microbiology, 94, 127-137.
https://doi.org/10.1046/j.1365-2672.2003.01800.x
[7]
Delgado, A., Solera del Río, R., Sales, D. and García-Morales, J. (2004) Study of the Co-Composting Process of Municipal Solid Waste and Sewage Sludge: Stability and Maturity. Proceedings of the 11th Conference of the FAO on Recycling of Agricultural Municipal and Industrial Residues in Agriculture, 257-260.
[8]
Godden, B., Penninckx, M., Piérard, A. and Lannoye, R. (1983) Evolution of Enzyme Activities and Microbial Populations during Composting of Cattle Manure. Applied Microbiology and Biotechnology, 17, 306-310.
https://doi.org/10.1007/BF00508026
[9]
Thalmann, A. (1968) Zur Methodik der bestimmung der dehydrogenaseaktivität im boden mittels triphenyltetrazoliumchlorid (TTC). Landwirtsch. Forsch, 21, 249- 258.
[10]
Alef, K. and Nannipieri, P. (1995) Methods in Applied Soil Microbiology and Biochemistry. Academic Press.
[11]
Eivazi, F. and Tabatabai, M. (1988) Glucosidases and Galacto-sidases in Soils. Soil Biology and Biochemistry, 20, 601-606.
https://doi.org/10.1016/0038-0717(88)90141-1
[12]
Tabatabai, M.A. (1994) Soil Enzymes. In: Bottomley, P.S., Angle, J.S. and Weaver, R.W., Eds., Methods of Soil Analysis: Part 2—Microbiological and Biochemical Properties, Soil Science Society of America, Madison, WI, 775-833.
[13]
Miyatake, F. and Iwabuchi, K. (2006) Effect of Compost Temperature on Oxygen Uptake Rate, Specific Growth Rate and Enzymatic Activity of Microorganisms in Dairy Cattle Manure. Bioresource Technology, 97, 961-965.
https://doi.org/10.1016/j.biortech.2005.04.035
[14]
Gómez, R.B., Lima, F.V. and Ferrer, A.S. (2006) The Use of Respiration Indices in the Composting Process: A Review. Waste Management & Research, 24, 37-47.
https://doi.org/10.1177/0734242X06062385
[15]
Federici, E., Pepi, M., Esposito, A., Scargetta, S., Fidati, L., Gasperini, S., et al. (2011) Two-Phase Olive Mill Waste Composting: Community Dynamics and Functional Role of the Resident Microbiota. Bioresource Technology, 102, 10965-10972.
https://doi.org/10.1016/j.biortech.2011.09.062
[16]
Rashad, F.M., Saleh, W.D. and Moselhy, M.A. (2010) Bioconversion of Rice Straw and Certain Agro-Industrial Wastes to Amendments for Organic Farming Systems: 1. Composting, Quality, Stability and Ma-turity Indices. Bioresource Technology, 101, 5952-5960. https://doi.org/10.1016/j.biortech.2010.02.103
[17]
de Bertoldi, M.D., Val-lini, G.E. and Pera, A. (1983) The Biology of Composting: A Review. Waste Management & Research, 1, 157-176.
https://doi.org/10.1177/0734242X8300100118
[18]
He, Y., Xie, K., Xu, P., Huang, X., Gu, W., Zhang, F., et al. (2013) Evolution of Microbial Community Diversity and Enzymatic Activity during Composting. Research in Microbiology, 164, 189-198. https://doi.org/10.1016/j.resmic.2012.11.001
[19]
Barrena, R., Vázquez, F. and Sánchez, A. (2008) Dehydrogenase Activity as a Method for Monitoring the Composting Process. Bioresource Technology, 99, 905- 908. https://doi.org/10.1016/j.biortech.2007.01.027
[20]
Benitez, E., Nogales, R., Elvira, C., Masciandaro, G. and Ceccanti, B. (1999) En-zyme Activities as Indicators of the Stabilization of Sewage Sludges Composting with Eisenia foetida. Bioresource Technology, 67, 297-303.
https://doi.org/10.1016/S0960-8524(98)00117-5
[21]
Garcia, C., Hernandez, T., Costa, F., Ceccanti, B. and Ciardi, C. (1992) Chang-es in ATP Content, Enzyme Activity and Inorganic Nitrogen Species during Composting of Organic Wastes. Canadian Journal of Soil Science, 72, 243-253.
https://doi.org/10.4141/cjss92-023