全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Interaction of Iron(III)-5,10,15,20-Tetrakis (4-Sulfonatophenyl) Porphyrin with Chloroquine, Quinine and Quinidine

DOI: 10.4236/csta.2017.63003, PP. 25-38

Keywords: FeTPPS, Apparent Binding Constant (K), Molecular Electrostatic Potential (MEP), Cambridge Structural Database (CSD)

Full-Text   Cite this paper   Add to My Lib

Abstract:

Iron(III)-5,10,15,20-tetrakis(4-sulfonatophenyl) porphyrin (FeTPPS) is used as non-physiological metalloporphyrin model for the natural iron (III)-protoporphyrin IX (FePPIX) resulting from hemoglobin degradation to investigate ligand binding reactions in aqueous solution. Studies were conducted on the interaction of FeTPPS with Chloroquine, Quinine, and Quinidine, which are historically the most common quinoline-based drugs used to treat malaria, an infectious disease afflicting several hundred millions every year worldwide, mainly in tropical regions. Using UV-Visible spectrophotometry, the binding reaction was studied at pH 7.40 in purely aqueous solution, and in aqueous solution containing NaNO3 at concentration of 0.1 M. Fitted titration curves obtained were in agreement with experimental data according to a formation scheme of 1:1 complex (1 FeTPPS μ-oxo-dimer: 1 Antimalarial). Values of apparent binding constant (K) obtained were between 4.3 × 103 M-1 to 7.59 × 104 M-1, demonstrating that FeTPPS and the antimalarials formed stable complexes. The stability of the complex decreased when NaNO3 was added to the solution. This ionic strength dependence was ascribed to electrostatic effects.

References

[1]  Sarayut, D., Andre, S., Martin, B. and Hendrik, U. (2007) Thermal and Electrical Properties of Porphyrin Derivatives and Their Relevance for Molecule Interferometry. The Journal of Chemical Physics, 126, Article ID: No. 164304.
https://doi.org/10.1063/1.2721563
[2]  Tsalu, P.V., et al. (2016) Distortions and Deformations of Metaled Meso-Substituted and Unsubstituted Porphyrins and Derivatives in Crystal Structures. Crystal Structure Theory and Applications, 5, 1-15.
https://doi.org/10.4236/csta.2016.51001
[3]  Fleischer, E.B. and Fine, DA. (1978) The Equilibria between Various Ligands and a Ferric Metalloporphyrin in Aqueous Solutions. Inorganica Chimica Acta, 29, 267-271.
https://doi.org/10.1016/S0020-1693(00)89659-0
[4]  Gushimana, Z.Y., Doepner, B., Martinez-Hackert, E. and Ilgenfritz G. (1993) Kinetics of Quinine-Deuterohemin Binding. Biophysical Chemistry, 47, 153-162.
https://doi.org/10.1016/0301-4622(93)85033-E
[5]  Hoshino, M., Ozawa, K., Seki, H. and Ford, C. (1993) Photochemistry of Nitric Oxide Adducts of Water-Soluble Iron (III) Porphyrin and Ferrihemoproteins Studied by Nanosecond Laser Photolysis. Journal of the American Chemical Society, 115, 9568-9575.
https://doi.org/10.1021/ja00074a023
[6]  Koji, K., Hiroaki, K., Shigeto, T. and Akihisa, Y. (2004). Anion Binding to a Ferric Porphyrin Complexed with Per-O-methylated β-Cyclodextrin in Aqueous Solution. Journal of the American Chemical Society, 126, 15202-15210.
https://doi.org/10.1021/ja045472i
[7]  De Villiers, K.A. and Egan, T.J. (2009) Recent Advances in the Discovery of Haem-Targeting Drugs for Malaria and Schistosomiasis. Molecules, 14, 2868-2887.
https://doi.org/10.3390/molecules14082868
[8]  Kilunga, I.P. (2010) Crystallographic and UV-VIS Spectrophotometric Study of Four Potential Heterocyclic Ligands for Fe-TPPS. Master’s Thesis, Katholieke Universiteit Leuven, Leuven.
[9]  Chou, A.C., Chevli, R. and Fitch, C.D. (1980) Ferriprotoporphyrin IX Fulfills the Criteria for identification as the Chloroquine Receptor of Malaria Parasites. Biochemistry, 19, 1543-1549.
https://doi.org/10.1021/bi00549a600
[10]  Disashi, T., Gushimana, Z.Y., Mavungu, D.D., Musuyu, M. and Mpiana, P.T. (1997) Essais préliminaires d’évaluation de l’activité antipaludique in vitro du complexe ferriprotoporphyrine IX-Chloroquine sur le Plasmodium falciparum. Annales de l'Institut de Recherche en Sciences de Sante, 91, 22-35.
[11]  Egan, T.J. and Marquis, H.M. (1999) The Role of Haem in the Activity of Chloroquine and Related Antimalarial Drugs. Coordination Chemistry Reviews, 190, 493-517.
https://doi.org/10.1016/S0010-8545(99)00112-5
[12]  Mpiana, P.T. and Gushimana, Z.Y. (2000) Interaction Hémine-Antipaludéens: un pas vers la Solution du Problème du Milieu Réactionnel. Revue congolaise des sciences nucleaires, 16, 61-67.
[13]  Kai, F.S., et al. (2008) Spin State of Chloroquine-Heme Complexes: Formation of Hemin Tetramer Adduct. The Open Spectroscopy Journal, 2, 10-18.
https://doi.org/10.2174/1874383800802010010
[14]  Egan, T.J., Combrink, J.M., Egan, J., et al. (2002) Fate of Haem Iron in the Malaria Parasite Plasmodium Falciparum. Biochemical Journal, 365, 343-347.
https://doi.org/10.1042/bj20020793
[15]  Gushimana, Z.Y., Mpiana, P.T. and Tshilanda, D.D. (1996) Etude de la Complexation de la Ferriprotoporphyrin IX avec la Quinine et la Chloroquine dans le Mélange eau-éthylèneglycol 50%. Annales de la faculte des sciences, Universite de Kinshasa, 2, 145-155.
[16]  Dorn, A., Vippagunta, S.R., Matile, H., et al. (1998) Comparison and Analysis of Several Ways to Promote Haematin (Haem) Polymerisation and Assessment of Its Initiation in Vitro. Biochemical Pharmacology, 55, 737-747.
https://doi.org/10.1016/S0006-2952(97)00509-1
[17]  Egan, T.J., Hunter, R., Kaschula, C.H., Marques, H.M., et al. (2000) Structure-Function Relationships in Aminoquinoléines: Effect of Amino and Chloro Groups on Quinoléine-Haematin Complexe Formation, Inhibition of Beta Haematin Formation and Antiplasmodial Activity. Journal of Medicinal Chemistry, 43, 283-291.
https://doi.org/10.1021/jm990437l
[18]  Egan, T.J. and Ncokazi, K. (2004) Effects of Solvent Composition and Ionic Strength on the Interaction of Quinoléine Antimalarials with Ferriprotoporphyrin IX. Journal of Inorganic Biochemistry, 98, 144-152.
https://doi.org/10.1016/j.jinorgbio.2003.09.007
[19]  Moreau, S., Perly, B. and Biguet, J. (1982) Interaction de la Chloroquine avec la Ferriprotoporphyrine IX. Etude par Resonance Magnétique Nucléaire. Biochimie, 64, 1015-1025.
https://doi.org/10.1016/S0300-9084(82)80382-9
[20]  De Villiers, K.A., Gildenhuys, J. and Le Roex, T. (2012) Iron (III) Protoporphyrin IX Complexes of the Antimalarial Cinchona Alkaloids Quinine and Quinidine. ACS Chemical Biology, 7, 666-671.
https://doi.org/10.1021/cb200528z
[21]  Biot, C., Donatella, T., Isabelle, F., et al. (2005) Insights into the Mechanism of Action of Ferroquine. Relationship between Physicochemical Properties and Antiplasmodial Activity. Molecular Pharmaceutics, 2, 185-193.
https://doi.org/10.1021/mp0500061
[22]  Michael, J.D., et al. (2005) Mapping Antimalarial Pharmacophores as a Useful Tool for the Rapid Discovery of Drugs Effective in Vivo: Design, Construction, Characterization and Pharmacology of Metaquine. Journal of Medicinal Chemistry, 48, 5423-5436.
https://doi.org/10.1021/jm0408013
[23]  Frolich, S., Schubert, C., Bienzle, U. and Siems, K.J. (2005) In Vitro Antiplasmodial Activity of Prenylated Chalcone Derivatives of Hops (Humulus Lupus) and Their Interaction with Haemin. Journal of Antimicrobial Chemotherapy, 55, 883-887.
https://doi.org/10.1093/jac/dki099
[24]  De Villiers, K.A., Marques, H.M. and Egan, T.J. (2008) The Crystal Structure of Halofantrine-Ferriprotoporphyrin IX and the Mechanism of Action of Arylmethanol Antimalarials. Journal of Inorganic Biochemistry, 102, 1660-1667.
https://doi.org/10.1016/j.jinorgbio.2008.04.001
[25]  Everly, B., Joan, M., Srivastava, T.S. and Chatterjee, A. (1971) Thermodynamic and Kinetic Properties of an Iron-Porphyrin System. Journal of the American Chemical Society, 93, 3162-3167.
https://doi.org/10.1021/ja00742a012
[26]  Paul, F. and Ralph, G.W. (1989) Induced Dimerization of Tetrakis (P-Sulfonatophenyl) Porphine and Metalloderivatives by a Polyammonium Macrocycle [32]-N8H88+. Journal of the American Chemical Society, 111, 4990-4992.
https://doi.org/10.1021/ja00195a069
[27]  Esther, G., William, R.S., William, T.M., et al. (1980) Reactions of Water-Soluble Metalloporphyrins with the Serum Protein, Hemopexin. Journal of the American Chemical Society, 102, 3939-3944.
https://doi.org/10.1021/ja00531a042
[28]  Mavakala, B.K., Nlandu, B.B., Mpiana, P.T., Gushimana, Z.Y. and Zhi-Wu, Y.V. (2003) Binding Reaction of Haemin with Chloroquine, Quinine and Quinidine in Water-Propyleneglycol Mixture. Chinese Journal of Chemistry, 21, 1022-1025.
[29]  Frisch, M.J., et al. (2014) GAUSSIAN09. Gaussian Inc., Wallingford, CT.
[30]  Bruno, I.J., et al. (2002) New Software for Searching the Cambridge Structural Database and Visualizing Crystal Structures. Acta Crystallographica Section B, 58, 389-397.
https://doi.org/10.1107/S0108768102003324
[31]  Macrae, C.F., et al. (2006) Mercury: Visualization and Analysis of Crystal Structures. Journal of Applied Crystallography, 39, 453-457.
https://doi.org/10.1107/S002188980600731X
[32]  Macrae, C.F., et al. (2008) Mercury CSD 2.0-New Features for the Visualization and Investigation of Crystal Structures. Journal of Applied Crystallography, 41, 466-470.
https://doi.org/10.1107/S0021889807067908
[33]  Mpiana, P.T. (2003) Contribution à l’étude thermodynamique et cinétique de la complexation de la protohémine et de la deuterohémine avec les antipaludéens à noyau quinoléine. Thèse de doctorat, Université de Kinshasa.
[34]  Mavakala, B.K. (2003) Interactions of Quinoléine and Artemisinin-Based Antimalarial Drugs with Hemin. Master’s Thesis, Tsinghua University, Beijing.
[35]  Egan, T.J., Mavuso, W.W., Ross, D.C. and Marques, H.M. (1997) Thermodynamic Factors Controlling the Interaction of Quinoléine Antimalarial Drugs with Ferriprotoporphyrin IX. Journal of Inorganic Biochemistry, 68, 137-145.
https://doi.org/10.1016/S0162-0134(97)00086-X
[36]  Shalaeva, M., Kenseth, J., Lombardo, F. and Bastin, A. (2008) Measurement of Dissociation Constants (pKa Values) of Organic Compounds by Multiplexed Capillary Electrophoresis Using Aqueous and Cosolvent Buffers. Journal of Pharmaceutical Sciences, 7, 2581-2606.
https://doi.org/10.1002/jps.21287
[37]  Perrin, D.D. (1965) Dissociation Constants of Organic Bases in Aqueous Solution. Butterworths, London.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133