Dual-Energy X-Ray Computed Tomography Scanner Using Two Different Energy-Selection Electronics and a Lutetium-Oxyorthosilicate Photomultiplier Detector
To obtain two kinds of tomograms at two different
X-ray energy ranges simultaneously, we have constructed a dual-energy X-ray
photon counter with a lutetium-oxyorthosilicate photomultiplier detector
system, three comparators, two
microcomputers, and two frequency-voltage converters. X-ray photons are
detected using the detector system, and the event pulses are input to three
comparators simultaneously to determine threshold energies. At a tube voltage
of 100 kV, the three threshold energies are 16, 35 and 52 keV, and two energy
ranges are 16-35 and 52-100 keV. X-ray photons
in the two ranges are counted using microcomputers, and the logical pulses from
the two microcomputers are input to two frequency-voltage converters. In
dual-energy computed tomography (CT), the tube voltage and current were 100 kV
and 0.29 mA, respectively. Two tomograms were obtained simultaneously at two
energy ranges. The energy ranges for gadolinium-L-edge and K-edge CT were 16-35 and 52-100 keV, respectively.
The maximum count rate of dual-energy CT was 105 kilocounts per second with
energies ranging from 16 to 100 keV, and the exposure time for tomography was
19.6 min.
References
[1]
Mori, H., Hyodo, K., Tanaka, E., Uddin-Mohammed, M., Yamakawa, A., Shinozaki, Y., Nakazawa, H., Tanaka, Y., Sekka, T., Iwata, Y., Handa, S., Umetani, K., Ueki, H., Yokoyama, T., Tanioka, K., Kubota, M., Hosaka, H., Ishikawa, N. and Ando, M. (1996) Small-Vessel Radiography In Situ with Monochromatic Synchrotron Radiation. Radiology, 201, 173-177. https://doi.org/10.1148/radiology.201.1.8816540
[2]
Hyodo, K., Ando, M., Oku, Y., Yamamoto, S., Takeda, T., Itai, Y., Ohtsuka, S., Sugishita, Y. and Tada, J. (1998) Development of a Two-Dimensional Imaging System for Clinical Applications of Intravenous Coronary Angiography Using Intense Synchrotron Radiation Produced by a Multipole Wiggler. Journal of Synchrotron Radiation, 5, 1123-1126. https://doi.org/10.1107/S0909049597017639
[3]
Sato, E., Tanaka, E., Mori, H., Kawai, T., Ichimaru, T., Sato, S., Takayama, K. and Ido, H. (2004) Demonstration of Enhanced K-Edge Angiography Using a Cerium Target X-Ray Generator. Medical Physics, 31, 3017-3022. https://doi.org/10.1118/1.1803433
[4]
Watanabe, M., Sato, E., Abderyim, P., Abudurexiti, A., Hagiwara, O., Matsukiyo, H., Osawa, A., Enomoto, T., Nagao, J., Sato, S., Ogawa, A. and Onagawa, J. (2011) First Demonstration of 10 keV-Width Energy-Discrimination K-Edge Radiography Using a Cadmium-Telluride X-Ray Camera with a Tungsten-Target Tube. Nuclear Instruments and Methods in Physics Research Section A, 637, 171-177.
[5]
Yanbe, Y., Sato, E., Chiba, H., Maeda, T., Matsushita, R., Oda, Y., Hagiwara, O., Matsukiyo, H., Osawa, A., Enomoto, T., Watanabe, M., Kusachi, S., Sato, S. and Ogawa, A. (2013) High-Sensitivity High-Speed X-Ray Fluorescence Scanning Cadmium Telluride Detector for Deep-Portion Cancer Diagnosis Utilizing Tungsten-Kα-Excited Gadolinium Mapping. Japanese Journal of Applied Physics, 52, 092201-1-4. https://doi.org/10.7567/JJAP.52.092201
[6]
Feuerlein, S., Roessl, E., Proksa, R., Martens, G., Klass, O., Jeltsch, M., Rasche, V., Brambs, H.J., Hoffmann, M.H.K. and Schlomka, J.P. (2008) Multienergy Photon-Counting K-Edge Imaging: Potential for Improved Luminal Depiction in Vascular Imaging. Radiology, 249, 1010-1016. https://doi.org/10.1148/radiol.2492080560
[7]
Ogawa, K., Kobayashi, T., Kaibuki, F., Yamakawa, T., Nanano, T., Hashimoto, D. and Nagaoka, H. (2012) Development of an Energy-Binned Photon-Counting Detector for X-Ray and Gamma-Ray Imaging. Nuclear Instruments and Methods in Physics Research Section A, 664, 29-37. https://doi.org/10.1016/j.nima.2011.10.009
[8]
Taguchi, K. (2017) Energy-Sensitive Photon Counting Detector-Based X-Ray Computed Tomography. Radiological Physics and Technology, 10, 8-22. https://doi.org/10.1007/s12194-017-0390-9
[9]
Zscherpel, U., Walter, D., Redmer, B., Ewert, U., Ullberg, C., Weber, N. and Pantsar, T. (2014) Digital Radiology with Photon Counting Detectors. Proc. 11th Europian Conference on Non-Destructive Testing, Prague, 6-10 October 2014. http://www.ndt.net/events/ECNDT2014/app/content/Paper/461_Zscherpel.pdf
[10]
Matsukiyo, H., Sato, E., Hagiwara, O., Abudurexiti, A., Osawa, A., Enomoto, T., Watanabe, M., Nagao, J., Sato, S., Ogawa, A. and Onagawa, J. (2011) Application of an Oscillation-Type Linear Cadmium Telluride Detector to Enhanced Gadolinium K-Edge Computed Tomography. Nuclear Instruments and Methods in Physics Research Section A, 632, 142-146. https://doi.org/10.1016/j.nima.2010.12.211
[11]
Sato, E., Oda, Y., Abudurexiti, A., Hagiwara, O., Matsukiyo, H., Osawa, A., Enomoto, T., Watanabe, M., Kusachi, S., Sato, S., Ogawa, A. and Onagawa, J. (2012) Demonstration of Enhanced Iodine K-Edge Imaging Using an Energy-Dispersive X-Ray Computed Tomography System with a 25 mm/s-Scan Linear Cadmium Telluride Detector and a Single Comparator. Applied Radiation and Isotopes, 70, 831-836. https://doi.org/10.1016/j.apradiso.2012.02.007
[12]
Hagiwara, O., Sato, E., Watanabe, M., Sato, Y., Oda, Y., Matsukiyo, H., Osawa, A., Enomoto, T., Kusachi, S. and Ehara, S. (2014) Investigation of Dual-Energy X-Ray Photon Counting Using a Cadmium Telluride Detector and Two Comparators and Its Application to Photon-Count Energy Subtraction. Japanese Journal of Applied Physics, 53, 102202-1-6. https://doi.org/10.7567/jjap.53.102202
[13]
Sato, E., Sugimura, S., Endo, H., Oda, Y., Abudurexiti, A., Hagiwara, O., Osawa, A., Matsukiyo, H., Enomoto, T., Watanabe, M., Kusachi, S., Sato, S., Ogawa, A. and Onagawa, J. (2012) 15 Mcps Photon-Counting X-Ray Computed Tomography System Using a ZnO-MPPC Detector and Its Application to Gadolinium Imaging. Applied Radiation and Isotopes, 70, 336-340. https://doi.org/10.1016/j.apradiso.2011.07.002
[14]
Wakabayashi, G., Nohtomi, A., Yahiro, E., Fujibuchi, T., Fukunaga, J., Umezu, Y., Nakamura, Y., Nakamura, K., Hosono, M. and Itoh, T. (2015) Applicability of Self-Activation of an NaI Scintillator for Measurement of Photo-Neutrons around a High-Energy X-Ray Radiotherapy Machine. Radiological Physics and Technology, 8, 125-134. https://doi.org/10.1007/s12194-014-0300-3
[15]
Sato, E., Kosuge, Y., Yamanome, H., Mikata, A., Miura, T., Oda, Y., Ishii, T., Hagiwara, O., Matsukiyo, H., Watanabe, M. and Kusachi, S. (2017) Investigation of Dual-Energy X-Ray Photon Counting Using a Cadmium Telluride Detector with Dual-Energy Selection Electronics. Radiation Physics and Chemistry, 130, 385-390. https://doi.org/10.1016/j.radphyschem.2016.09.018