全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

CD16+ Monocyte Subsets in Patients with Total Joint Arthroplasty

DOI: 10.4236/ojo.2017.78023, PP. 211-227

Keywords: Osteolysis, Wear Debris, CD14+CD16+ Monocytes, Aseptic Loosening, AL, Flow Cytometry

Full-Text   Cite this paper   Add to My Lib

Abstract:

Objective: There are two monocyte populations in human blood: CD14+CD16- classical monocytes and CD14+CD16+ inflammatory monocytes. CD14+CD16+ inflammatory monocytes, account for approximately 10% of the total monocytes, may be expanded in various types of inflammatory conditions. The purpose of this study was to investigate whether the expansion of the CD14+CD16+ monocyte population represents a risk factor of aseptic loosening (AL). Methods: Peripheral monocytes subsets were measured in revision patients with AL (n = 35) and in patients with stable implants (SI, n = 56). The gene profiles of TNFα, IL-1β, CD16, CD68 and TRAP5B from collected loosening periprosthetic tissues were analyzed. Results: There were no significant differences in the CD14+CD16+ monocyte populations between the SI and AL patients. The CD14+CD16+ monocytes were marginally higher in revision patients with osteolysis (n = 30), compared to patients without osteolysis (n = 5) though no statistically difference was found. There was an association between the CD14+CD16+ monocyte subpopulation and the tissue gene profiles, including IL-1β (p = 0.063), CD68 (p = 0.036), and TRAP5B (p = 0.073). Conclusion: It was demonstrated that the expansion of CD14+CD16+ monocytes reflects, to some extent, the inflammatory status of the loosening periprosthetic tissues. It is unclear if some of those SI patients (no pain and negative radiograph) who have a higher frequency of CD14+CD16+ monocytes may be at the early stage of AL. Further evaluation of CD14+CD16+ monocyte population, independently or combined with other factors, will be useful to design a risk profile for AL incidence and progression.

References

[1]  Berry, D.J., Harmsen, W.S., Cabanela, M.E. and Morrey, B.F. (2002) Twenty-Five-Year Survivorship of Two Thousand Consecutive Primary Charnley Total Hip Replacements: Factors Affecting Survivorship of Acetabular and Femoral Components. The Journal of Bone and Joint Surgery, 84, 171-177.
https://doi.org/10.2106/00004623-200202000-00002
[2]  Garellick, G., Malchau, H. and Herberts, P. (2000) Survival of Hip Replacements. A Comparison of a Randomized Trial and a Registry. Clinical Orthopaedics and Related Research, 375, 157-167. https://doi.org/10.1097/00003086-200006000-00019
[3]  Kurtz, S., Ong, K., Lau, E., Mowat, F. and Halpern, M. (2007) Projections of Primary and Revision Hip and Knee Arthroplasty in the United States from 2005 to 2030. The Journal of Bone and Joint Surgery, 89, 780-785.
[4]  McNamara, I.R. (2010) Impaction Bone Grafting in Revision Hip Surgery: Past, Present and Future. Cell Tissue Bank, 11, 57-73.
https://doi.org/10.1007/s10561-009-9147-y
[5]  Sundfeldt, M., Carlsson, L.V., Johansson, C.B., Thomsen, P. and Gretzer, C. (2006) Aseptic Loosening, Not Only a Question of Wear: A Review of Different Theories. Acta Orthopaedica, 77, 177-197.
https://doi.org/10.1080/17453670610045902
[6]  Rao, A.J., Gibon, E., Ma, T., Yao, Z., Smith, R.L. and Goodman, S.B. (2012) Revision Joint Replacement, Wear Particles, and Macrophage Polarization. Acta Biomaterialia, 8, 2815-2823.
[7]  Lin, T.H., Tamaki, Y., Pajarinen, J., Waters, H.A., Woo, D.K., Yao, Z. and Goodman, S.B. (2014) Chronic Inflammation in Biomaterial-Induced Periprosthetic Osteolysis: NF-kappaB as a Therapeutic Target. Acta Biomaterialia, 10, 1-10.
[8]  Keener, J.D., Callaghan, J.J., Goetz, D.D., Pederson, D.R., Sullivan, P.M. and Johnston, R.C. (2003) Twenty-Five-Year Results after Charnley Total Hip Arthroplasty in Patients Less than Fifty Years Old: A Concise Follow-Up of a Previous Report. The Journal of Bone and Joint Surgery, 85, 1066-1072.
https://doi.org/10.2106/00004623-200306000-00013
[9]  He, T., Wu, W., Huang, Y., Zhang, X. and Tang, T. (2013) Multiple Biomarkers Analysis for the Early Detection of Prosthetic Aseptic Loosening of Hip Arthroplasty. International Orthopaedics, 37, 1025-1031.
https://doi.org/10.1007/s00264-013-1837-1
[10]  Nich, C., Takakubo, Y., Pajarinen, J., Ainola, M., Salem, A., Sillat, T., Rao, A.J., Raska, M., Tamaki, Y., Takagi, M., Konttinen, Y.T., Goodman, S.B. and Gallo, J. (2013) Macrophages-Key Cells in the Response to Wear Debris from Joint Replacements. Journal of Biomedical Materials Research Part A, 101, 3033-3045.
https://doi.org/10.1002/jbm.a.34599
[11]  Mertens, M.T. and Singh, J.A. (2011) Biomarkers in Arthroplasty: A Systematic Review. The Open Orthopaedics Journal, 5, 92-105.
https://doi.org/10.2174/1874325001105010092
[12]  Nibbering, P.H., Leijh, P.C. and van, F.R. (1987) Quantitative Immunocytochemical Characterization of Mononuclear Phagocytes. II. Monocytes and Tissue Macrophages. Immunology, 62, 171-176.
[13]  Geissmann, F., Jung, S. and Littman, D.R. (2003) Blood Monocytes Consist of Two Principal Subsets with Distinct Migratory Properties. Immunity, 19, 71-82.
[14]  Fujikawa, Y., Quinn, J.M., Sabokbar, A., McGee, J.O. and Athanasou, N.A. (1996) The Human Osteoclast Precursor Circulates in the Monocyte Fraction. Endocrinology, 137, 4058-4060.
https://doi.org/10.1210/endo.137.9.8756585
[15]  Passlick, B., Flieger, D. and Ziegler-Heitbrock, H.W. (1989) Identification and Characterization of a Novel Monocyte Subpopulation in Human Peripheral Blood. Blood, 74, 2527-2534.
[16]  Ziegler-Heitbrock, H.W., Fingerle, G., Strobel, M., Schraut, W., Stelter, F., Schutt, C., Passlick, B. and Pforte, A. (1993) The Novel Subset of CD14+/CD16+ Blood Monocytes Exhibits Features of Tissue Macrophages. European Journal of Immunology, 23, 2053-2058.
https://doi.org/10.1002/eji.1830230902
[17]  Belge, K.U., Dayyani, F., Horelt, A., Siedlar, M., Frankenberger, M., Frankenberger, B., Espevik, T. and Ziegler-Heitbrock, L. (2002) The Proinflammatory CD14+ CD16+DR++ Monocytes Are a Major Source of TNF. The Journal of Immunology, 168, 3536-3542.
https://doi.org/10.4049/jimmunol.168.7.3536
[18]  Frankenberger, M., Sternsdorf, T., Pechumer, H., Pforte, A. and Ziegler-Heitbrock, H.W. (1996) Differential Cytokine Expression in Human Blood Monocyte Subpopulations: A Polymerase Chain Reaction Analysis. Blood, 87, 373-377.
[19]  Randolph, G.J., Sanchez-Schmitz, G., Liebman, R.M. and Schakel, K. (2002) The CD16 (+) (FcgammaRIII (+)) Subset of Human Monocytes Preferentially Becomes Migratory Dendritic Cells in a Model Tissue Setting. The Journal of Experimental Medicine, 196, 517-527.
https://doi.org/10.1084/jem.20011608
[20]  Kawanaka, N., Yamamura, M., Aita, T., Morita, Y., Okamoto, A., Kawashima, M., Iwahashi, M., Ueno, A., Ohmoto, Y. and Makino, H. (2002) CD14+, CD16+ Blood Monocytes and Joint Inflammation in Rheumatoid Arthritis. Arthritis & Rheumatology, 46, 2578-2586.
https://doi.org/10.1002/art.10545
[21]  Broker, B.M., Edwards, J.C., Fanger, M.W. and Lydyard, P.M. (1990) The Prevalence and Distribution of Macrophages Bearing Fc Gamma R I, Fc Gamma R II, and Fc Gamma R III in Synovium. Scandinavian Journal of Rheumatology, 19, 123-135.
https://doi.org/10.3109/03009749009102116
[22]  Feldmann, M., Brennan, F.M. and Maini, R.N. (1996) Role of Cytokines in Rheumatoid Arthritis. Annual Review of Immunology, 14, 397-440.
https://doi.org/10.1146/annurev.immunol.14.1.397
[23]  Granchi, D., Ciapetti, G., Stea, S., Savarino, L., Filippini, F., Sudanese, A., Zinghi, G. and Montanaro, L. (1999) Cytokine Release in Mononuclear Cells of Patients with Co-Cr Hip Prosthesis. Biomaterials, 20, 1079-1086.
[24]  Sabokbar, A., Fujikawa, Y., Neale, S., Murray, D.W. and Athanasou, N.A. (1997) Human Arthroplasty Derived Macrophages Differentiate into Osteoclastic Bone Resorbing Cells. Annals of the Rheumatic Diseases, 56, 414-420.
https://doi.org/10.1136/ard.56.7.414
[25]  Ingham, E. and Fisher, J. (2000) Biological Reactions to Wear Debris in Total Joint Replacement. Proceedings of the Institution of Mechanical Engineers, 214, 21-37.
https://doi.org/10.1243/0954411001535219
[26]  Crotti, T.N., Smith, M.D., Findlay, D.M., Zreiqat, H., Ahern, M.J., Weedon, H., Hatzinikolous, G., Capone, M., Holding, C. and Haynes, D.R. (2004) Factors Regulating Osteoclast Formation in Human Tissues Adjacent to Peri-Implant Bone Loss: Expression of Receptor Activator NFkappaB, RANK Ligand and Osteoprotegerin. Biomaterials, 25, 565-573.
https://doi.org/10.1016/S0142-9612(03)00556-8
[27]  Gehrke, T., Sers, C., Morawietz, L., Fernahl, G., Neidel, J., Frommelt, L. and Krenn, V. (2003) Receptor Activator of Nuclear Factor kappaB Ligand Is Expressed in Resident and Inflammatory Cells in Aseptic and Septic Prosthesis Loosening. Scandinavian Journal of Rheumatology, 32, 287-294.
https://doi.org/10.1080/03009740310003929
[28]  Lee, S.H., Brennan, F.R., Jacobs, J.J., Urban, R.M., Ragasa, D.R. and Glant, T.T. (1997) Human Monocyte/Macrophage Response to Cobalt-Chromium Corrosion Products and Titanium Particles in Patients with Total Joint Replacements. Journal of Orthopaedic Research, 15, 40-49. https://doi.org/10.1002/jor.1100150107
[29]  Miyanishi, K., Trindade, M.C., Ma, T., Goodman, S.B., Schurman, D.J. and Smith, R.L. (2003) Periprosthetic osteolysis: Induction of Vascular Endothelial Growth Factor from Human Monocyte/Macrophages by Orthopaedic Biomaterial Particles. Journal of Bone and Mineral Research, 18, 1573-1583.
https://doi.org/10.1359/jbmr.2003.18.9.1573
[30]  Neale, S.D. and Athanasou, N.A. (1999) Cytokine Receptor Profile of Arthroplasty Macrophages, Foreign Body Giant Cells and Mature Osteoclasts. Acta Orthopaedica Scandinavica, 70, 452-458.
https://doi.org/10.3109/17453679909000980
[31]  Ren, W.P., Wu, B., Mayton, L. and Wooley, P.H. (2002) Polyethylene and Methyl Methacrylate Particle-Stimulated Inflammatory Tissue and Macrophages Up-Regulate Bone Resorption in a Murine Neonatal Bone Resorption in a Murine Neonatal Calvaria in Vitro Organ System. Journal of Orthopaedic Research, 20, 1031-1037.
[32]  Pandey, R., Quinn, J., Joyner, C., Murray, D.W., Triffitt, J.T. and Athanasou, N.A. (1996) Arthroplasty Implant Biomaterial Particle Associated Macrophages Differentiate into Lacunar Bone Resorbing Cells. Annals of the Rheumatic Diseases, 55, 388-395.
https://doi.org/10.1136/ard.55.6.388
[33]  Yano, R., Yamamura, M., Sunahori, K., Takasugi, K., Yamana, J., Kawashima, M. and Makino, H. (2007) Recruitment of CD16+ Monocytes into Synovial Tissues Is Mediated by Fractalkine and CX3CR1 in Rheumatoid Arthritis Patients. Acta Medica Okayama, 61, 89-98.
[34]  Kawanaka, N., Nagake, Y., Yamamura, M. and Makino, H. (2002) Expression of Fc Gamma Receptor III (CD16) on Monocytes during Hemodialysis in Patients with Chronic Renal Failure. Nephron, 90, 64-71.
https://doi.org/10.1159/000046316
[35]  Hanai, H., Iida, T., Takeuchi, K., Watanabe, F., Yamada, M., Kikuyama, M., Maruyama, Y., Iwaoka, Y., Hirayama, K., Nagata, S. and Takai, K. (2008) Adsorptive Depletion of Elevated Proinflammatory CD14+CD16+DR++ Monocytes in Patients with Inflammatory Bowel Disease. The American Journal of Gastroenterology, 103, 1210-1216.
https://doi.org/10.1111/j.1572-0241.2007.01714.x
[36]  Okamoto, H., Mizuno, K. and Horio, T. (2003) Circulating CD14+ CD16+ Monocytes Are Expanded in Sarcoidosis Patients. The Journal of Dermatology, 30, 503-509.
https://doi.org/10.1111/j.1346-8138.2003.tb00424.x
[37]  Fischer-Smith, T., Croul, S., Sverstiuk, A.E., Capini, C., L’Heureux, D., Regulier, E.G., Richardson, M.W., Amini, S., Morgello, S., Khalili, K. and Rappaport, J. (2001) CNS Invasion by CD14+/CD16+ Peripheral Blood-Derived Monocytes in HIV Dementia: Perivascular Accumulation and Reservoir of HIV Infection. Journal of NeuroVirology, 7, 528-541.
https://doi.org/10.1080/135502801753248114
[38]  Ren, W.P., Li, X.Y., Chen, B.D. and Wooley, P.H. (2004) Erythromycin Inhibits Wear Debris-Induced Osteoclastogenesis by Modulation of Murine Macrophage NFkB Activity. Journal of Orthopaedic Research, 22, 21-29.
[39]  Ren, W.P., Yang, S.Y., Fang, H.W., Hsu, S. and Wooley, P.H. (2003) Distinct Gene Expression of Receptor Activator of Nuclear Factor-kB and Rank Ligand in the Inflammatory Response to Variant Morphologies of UHMWPE Particles. Biomaterials, 24, 4819-4826.
[40]  Ren, W.P., Bin, W., Mayton, L. and Wooley, P.H. (2006) Erythromycin (EM) Inhibits Wear Debris-Induced Inflammatory Osteolysis in a Murine Model. Journal of Orthopaedic Research, 24, 280-290.
https://doi.org/10.1002/jor.20004
[41]  Goodman, S.B., Gibon, E., Pajarinen, J., Lin, T.-H. and Keeney, M. (2014) Novel Biological Strategies for Treatment of Wear Particle-Induced Periprosthetic Osteolysis of Orthopaedic Implants for Joint Replacement. Journal of The Royal Society Interface, 11, Article ID: 20130962.
https://doi.org/10.1098/rsif.2013.0962
[42]  Wooley, P.H. and Schwarz, E.M. (2004) Aseptic Loosening. Gene Therapy, 11, 402-407.
https://doi.org/10.1038/sj.gt.3302202
[43]  Morawietz, L., Classen, R.A., Schroder, J.H., Dynybil, C., Perka, C., Skwara, A., Neidel, J., Gehrke, T., Frommelt, L., Hansen, T., Otto, M., Barden, B., Aigner, T., Stiehl, P., Schubert, T., Meyer-Scholten, C., Konig, A., Strobel, P., Rader, C.P., Kirschner, S., Lintner, F., Ruther, W., Bos, I., Hendrich, C., Kriegsmann, J. and Krenn, V. (2006) Proposal for a Histopathological Consensus Classification of the Periprosthetic Interface Membrane. Journal of Clinical Pathology, 59, 591-597.
https://doi.org/10.1136/jcp.2005.027458
[44]  Petitprez, V., Royer, B., Desoutter, J., Guiheneuf, E., Rigolle, A., Marolleau, J.P., Kamel, S. and Guillaume, N. (2015) CD14+CD16+ Monocytes Rather than CD14+ CD51/61+ Monocytes Are a Potential Cytological Marker of Circulating Osteoclast Precursors in Multiple Myeloma. A Preliminary Study. International Journal of Laboratory Hematology, 37, 29-35. https://doi.org/10.1111/ijlh.12216
[45]  Wu, W., Zhang, X., Zhang, C., Tang, T., Ren, W. and Dai, K. (2009) Expansion of CD14 (+) CD16 (+) Peripheral Monocytes among Patients with Aseptic Loosening. Inflammation Research, 58, 561-570. https://doi.org/10.1007/s00011-009-0020-z
[46]  Ren, W., Blasier, R., Peng, X., Shi, T., Wooley, P.H. and Markel, D. (2009) Effect of Oral Erythromycin Therapy in Patients with Aseptic Loosening of Joint Prostheses. Bone, 44, 671-677.
[47]  Goodman, S.B., Knoblich, G., O’Connor, M., Song, Y., Huie, P. and Sibley, R. (1996) Heterogeneity in Cellular and Cytokine Profiles from Multiple Samples of Tissue Surrounding Revised Hip Prostheses. Journal of Biomedical Materials Research, 31, 421-428.
https://doi.org/10.1002/(SICI)1097-4636(199607)31:3<421::AID-JBM17>3.0.CO;2-L
[48]  Wong, K., Yeap, W., Tai, J., Ong, S., Dang, T. and Wong, S. (2012) The Three Human Monocyte Subsets: Implications for Health and Disease. Immunologic Research, 53, 41-57.
https://doi.org/10.1007/s12026-012-8297-3
[49]  Chun, L., Yoon, J., Song, Y., Huie, P., Regula, D. and Goodman, S. (1999) The Characterization of Macrophages and Osteoclasts in Tissues Harvested from Revised Total Hip Prostheses. Journal of Biomedical Materials Research, 48, 899-903.
https://doi.org/10.1002/(SICI)1097-4636(1999)48:6<899::AID-JBM20>3.0.CO;2-E
[50]  Markel, D.C., Zhang, R., Shi, T., Hawkins, M. and Ren, W. (2009) Inhibitory Effects of Erythromycin on Wear Debris-Induced VEGF/Flt-1 Gene Production and Osteolysis. Inflammation Research, 58, 413-421.
https://doi.org/10.1007/s00011-009-0007-9
[51]  Habermann, B., Eberhardt, C., Feld, M., Zichner, L. and Kurth, A.A. (2007) Tartrate-Resistant Acid Phosphatase 5b (TRAP 5b) as a Marker of Osteoclast Activity in the Early Phase after Cementless Total Hip Replacement. Acta Orthopaedica, 78, 221-225.
https://doi.org/10.1080/17453670710013717
[52]  Landgraeber, S., Loer, F., Heep, H., Classen, T., Grabellus, F., Totsch, M. and von, K.M. (2009) Tartrate-Resistant Acid Phosphatase 5b and C-Terminal Telopeptides of Type I Collagen as Markers for Diagnosis of Aseptic Loosening after Total Hip Replacement. Archives of Orthopaedic and Trauma Surgery, 130, 441-445.
https://doi.org/10.1007/s00402-009-0905-x
[53]  Heimbeck, I., Hofer, T.P., Eder, C., Wright, A.K., Frankenberger, M., Marei, A., Boghdadi, G., Scherberich, J. and Ziegler-Heitbrock, L. (2010) Standardized Single-Platform Assay for Human Monocyte Subpopulations: Lower CD14+CD16++ Monocytes in Females. Cytometry A, 77, 823-830. https://doi.org/10.1002/cyto.a.20942
[54]  Steppich, B., Dayyani, F., Gruber, R., Lorenz, R., Mack, M. and Ziegler-Heitbrock, H.W. (2000) Selective Mobilization of CD14 (+) CD16 (+) Monocytes by Exercise. Cell Physiology—American Journal of Physiology, 279, C578-C586.
[55]  Fingerle, G., Pforte, A., Passlick, B., Blumenstein, M., Strobel, M. and Ziegler-Heitbrock, H.W. (1993) The Novel Subset of CD14+/CD16+ Blood Monocytes Is Expanded in Sepsis Patients. Blood, 82, 3170-3176.
[56]  Heron, M., Grutters, J.C., van Velzen-Blad, H., Veltkamp, M., Claessen, A.M. and van den Bosch, J.M. (2008) Increased Expression of CD16, CD69, and Very Late Antigen-1 on Blood Monocytes in Active Sarcoidosis. Chest, 134, 1001-1008.
https://doi.org/10.1378/chest.08-0443
[57]  Nagasawa, T., Kobayashi, H., Aramaki, M., Kiji, M., Oda, S. and Izumi, Y. (2004) Expression of CD14, CD16 and CD45RA on Monocytes from Periodontitis Patients. Journal of Periodontal Research, 39, 72-78.
https://doi.org/10.1111/j.1600-0765.2004.00713.x
[58]  Nockher, W.A. and Scherberich, J.E. (1998) Expanded CD14+ CD16+ Monocyte Subpopulation in Patients with Acute and Chronic Infections Undergoing Hemodialysis. Infection and Immunity, 66, 2782-2790.
[59]  Takeyama, N., Yabuki, T., Kumagai, T., Takagi, S., Takamoto, S. and Noguchi, H. (2007) Selective Expansion of the CD14 (+)/CD16 (Bright) Subpopulation of Circulating Monocytes in Patients with Hemophagocytic Syndrome. Annals of Hematology, 86, 787-792.
https://doi.org/10.1007/s00277-007-0332-4
[60]  Ben-Hur, H., Mor, G., Insler, V., Blickstein, I., mir-Zaltsman, Y., Sharp, A., Globerson, A. and Kohen, F. (1995) Menopause Is Associated with a Significant Increase in Blood Monocyte Number and a Relative Decrease in the Expression of Estrogen Receptors in Human Peripheral Monocytes. American Journal of Reproductive Immunology, 34, 363-369. https://doi.org/10.1111/j.1600-0897.1995.tb00965.x
[61]  Janols, H., Bredberg, A., Thuvesson, I., Janciauskiene, S., Grip, O. and Wullt, M. (2010) Lymphocyte and Monocyte Flow Cytometry Immunophenotyping as a Diagnostic Tool in Uncharacteristic Inflammatory Disorders. BMC Infectious Diseases, 10, 205.
https://doi.org/10.1186/1471-2334-10-205

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133