This paper is mainly dedicated to the experimental electric and spectroscopic analysis of positive corona discharges in the case of point to plane configuration, generated in nitrogen at atmospheric pressure. The maximum corona current (a few hundreds of mA), the average current (a few μA) and the average propagation velocity (a few 107 cm/s) are analyzed with the variation of the applied voltage (a few kV) and the gap distance (not exceeding 16 mm). By using an ICCD camera, the dynamics of the discharge during the propagation of primary and secondary streamers across the gap distance was analyzed. Spectroscopic study is emphasized in a spectral range from 200 nm up to 500 nm, to determine the important excited species present in the gaseous environment such as the second positive and the first negative systems (SPS and FNS respectively). The identification of the quenching NOγ emission bands is also emphasized.
References
[1]
Chang, J.S., Lawless, P.A. and Yamamoto T. (1991) Corona Discharge Processes. IEEE Transactions on Plasma Science, 19, 1152. https://doi.org/10.1109/27.125038
[2]
Hsiao, M.C., Merritt, B.T., Penetrante, B.M., Vogtlin, G.E. and Wallman P.H. (1995) Plasma Assisted Decomposition of Methanol and Trichloroethylene in Atmospheric Pressure Air Streamers by Electrical Discharge Processing. Journal of Applied Physics, 78, 3451. http://doi.org/10.1063/1.359976
[3]
van Veldhuizen, E.M., Rutgers, W.R. and Bityurin V.A. (1996) Energy Efficiency of NO Removal by Pulsed Corona Discharges. Plasma Chemistry and Plasma Processing, 16, 227. https://doi.org/10.1007/BF01570180
[4]
van Veldhuizen, E.M. (1999) Electrical Discharges for Environmental Purposes: Fundamentals and Applications. Nova Science, New York, ISBN 1-56072-743-8.
[5]
Marode, E. (1975) The Mechanism of Spark Breakdown in Air at Atmospheric Pressure between a Positive Point and a Plane. I. Experimental: Nature of the Streamer Track. Journal of Applied Physics, 46, 2005.
http://doi.org/10.1063/1.321882
[6]
Abahazem, A., Merbahi, N., Ducasse, O., Eichwald, O. and Yousfi, M. (2008) Primary and Secondary Streamer Dynamics in Pulsed Positive Corona Discharges. IEEE Transactions on Plasma Science, 36, 924.
https://doi.org/10.1109/TPS.2008.925708
[7]
Toyota, H., Zama, S., Akarine, Y., Matsuoka, S. and Hidaka, K. (2002) Gaseous Electrical Discharge Characteristics in Air and Nitrogen at Cryogenic Temperature. IEEE Transactions on Dielectrics and Electrical Insulation, 9, 891-898.
https://doi.org/10.1109/TDEI.2002.1115482
[8]
Miller, C.G. and Loeb, L.B. (1951) Positive Coaxial Cylindrical Corona Discharges in Pure N2, O2, and Mixtures Thereof. Journal of Applied Physics, 22, 494-503.
http://doi.org/10.1063/1.1699990
[9]
Kawada, Y., Shamoto, S. and Hosokawa, T. (1988) Nonosecond-Pulse Breakdown of Gas-Insulated Gaps. Journal of Applied Physics, 63, 1877-1881.
http://doi.org/10.1063/1.339885
[10]
Settaouti, A. and Settaouti, L. (2007) Numerical Simulation of Corona Discharge in N2. Journal of Electrostatics, 65, 625-630.
https://doi.org/10.1016/j.elstat.2007.02.001
[11]
Cernak, M., Hosokawa, T., Kobayachi, S. and Kaneda, T. (1998) Streamer Mechanism for Negative Corona Current Pulses. Journal of Applied Physics, 83, 5678-5690.
https://doi.org/10.1063/1.367422
[12]
Mraihi, A., Merbahi, N., Yousfi, M., Abahazem, A. and Eichwald, O. (2011) Electrical and Spectroscopic Analysis of Mono- and Multi-Tip Pulsed Corona Discharges in Air at Atmospheric Pressure. Plasma Sources Science and Technology, 20, Article ID: 065002. https://doi.org/10.1088/0963-0252/20/6/065002
[13]
Dubois, D., Merbahi, N., Eichwald, O., Yousfi, M. and Benhenni, M. (2007) Electrical Analysis of Positive Corona Discharge in Air and N2, O2, and CO2 Mixtures. Journal of Applied Physics, 101, Article ID: 053304.
https://doi.org/10.1063/1.2464191
[14]
Abahazem, A., Guedah, H., Merbahi, N., Yousfi, M., Eichwald, O. and Ihlal, A. (2015) Energy Injected in Multi-Tip Pulsed Corona Discharge Reactor in Air at Atmospheric Pressure for Pollution Control. Materials Today: Proceedings, 2, 4694-4700. https://doi.org/10.1016/j.matpr.2015.10.001
[15]
Czapka, T. and Kacprzyk, R. (2011) Non-Thermal Plasma Reactor with Back Corona Discharge Electrode. Journal of Physics: Conference Series, 301, Article ID: 012019. https://doi.org/10.1088/1742-6596/301/1/012019
[16]
Lan, G., Vernon, C., Rajeev, T. and Viktor, S. (1997) Study of Cathode-Directed Positive Streamers in Air by Streamer Current and Luminosity Measurements. IEEE Annual Report-Conference on Electrical Insulation and Dielectric Phenomena, Minneapolis, 19-22 October 1997, 587-590.
https://doi.org/10.1109/ceidp.1997.641142
[17]
Won, J.Y. and Williams, P.F. (2002) Experimental Study of Streamers in Pure N2 and N2/O2 Mixtures and a ≈ 13 cm Gap. Journal of Physics D: Applied Physics, 35, 205-218. https://doi.org/10.1088/0022-3727/35/3/308
[18]
Wagner, K.H. (1966) Die Entwicklung der Elektronenlawine in den Plasmakanal, Untersucht mit Bildverstarker und Wischverschuβ. Zeitschrift für Physik, 189, 465-515. https://doi.org/10.1007/BF01338655
[19]
Merbahi, N., Abahazem, A., Dubois, D., Eichwald, O. and Yousfi, M. (2008) Optical and Electrical Analyses of DC Positive Corona Discharge in N2/O2/CO2 Gas Mixtures. The European Physical Journal Applied Physics, 42, 55-61.
https://doi.org/10.1051/epjap:2008035
[20]
Sigmond, R.S. (1984) The Residual Streamer Channel: Return Strokes and Secondary Streamers. Journal of Applied Physics, 56, 1355-1370.
https://doi.org/10.1063/1.334126
[21]
Dougal, R.A. and Williams, P.F. (1984) Fundamental Processes in Laser-Triggered Electrical Breakdown of Gases. Journal of Physics D: Applied Physics, 17, 903.
https://doi.org/10.1088/0022-3727/17/5/007
[22]
Wagner, K.H. (1967) Vorstadium des Funkens untersucht mit Bildverstarker. Zeitschrift für Physik, 204, 177-197. https://doi.org/10.1007/BF01326133
[23]
Peterkin, F.E. and Williams, P.F. (1989) Triggering in Trigatron Spark Gaps: A Fundamental Study. Journal of Applied Physics, 66, 4163.
https://doi.org/10.1063/1.344001
[24]
Yagi, I., Okada, S., Matsumoto, T., Wang, D., Namihira, T. and Takaki, K. (2011) Streamer Propagation of Nanosecond Pulse Discharge with Various Rise Times. IEEE Transactions on Plasma Sciences, 39, 2232.
https://doi.org/10.1109/TPS.2011.2154386
[25]
Bayle, M., Bayle, P. and Crokaert, M. (1975) The Development of Breakdown in a Homogeneous Field at High Overvoltages in Helium-Neon Mixtures and Nitrogen. Journal of Physics D, 8, 2181. https://doi.org/10.1088/0022-3727/8/18/008
[26]
Chalmers, L.D., Duffy, H. and Tedford, D.J. (1972) The Mechanism of Spark Breakdown in Nitrogen, Oxygen and Sulphur Hexafluoride. Proceedings of the Royal Society A, 329, 171. https://doi.org/10.1098/rspa.1972.0107
[27]
Stritzke, P., Sander, I. and Raether, H. (1977) Spatial and Temporal Spectroscopy of a Streamer Discharge in Nitrogen. Journal of Physics D, 10, 2285.
https://doi.org/10.1088/0022-3727/10/16/019
[28]
Naidis, G.V. (2009) Positive and Negative Streamers in Air: Velocity-Diameter Relation. Physical Review E, 79, Article ID: 057401.
https://doi.org/10.1103/PhysRevE.79.057401
[29]
Komuro, A., Ono, R. and Oda, T. (2013) Effects of Pulse Voltage Rise Rate on Velocity, Diameter and Radical Production of an Atmospheric-Pressure Streamer Discharge. Plasma Sources Science and Technology, 22, Article ID: 045002.
https://doi.org/10.1088/0963-0252/22/4/045002
[30]
Potamianou, S., Spyrou, N., Held, B. and Loiseau, J.F. (2006) Numerical Study of Active Particles Creation and Evolution in a Nitrogen Point-to-Plane Afterglow Discharge at low Pressure. Journal of Physics D: Applied Physics, 39, 4001-4009.
https://doi.org/10.1088/0022-3727/39/18/012
[31]
Smith, K. and Thomson, R.M. (1978) Computer Modeling of Gas Lasers. Plenum Press, New York, 416. https://doi.org/10.1007/978-1-4757-0641-3
[32]
Bortner, M.H. and Baurer, T. (1978) DNA. 2nd Edition, 1948H, TEMPO 24, General Electric, Boston.
[33]
Zerrouki, A., Motomura, H., Ikeda, Y., Jinno, M. and Yousfi, M. (2016) Optical Emission Spectroscopy Characterizations of Micro-Air Plasma Used for Simulation of Cell Membrane Poration. Plasma Physics and Controlled Fusion, 58, Article ID: 075006. https://doi.org/10.1088/0741-3335/58/7/075006
[34]
Pintassilgo, C.D., Loureiro, J. and Guerra, V. (2005) Modeling of a N2-O2 Flowing Afterglow for Plasma Sterilization. Journal of Physics D: Applied Physics, 38, 417-430. https://doi.org/10.1088/0022-3727/38/3/011
[35]
Simek, M., Babicky, V., Clupek, M., DeBenedictis, S., Dilecce, G. and Sunka, P. (1998) Excitation of N2(C3πu) and NO(A2Σ+) States in a Pulsed Positive Corona Discharge in N2, N2-O2 and N2-NO Mixtures. Journal of Physics D: Applied Physics, 31, 2591-2602. https://doi.org/10.1088/0022-3727/31/19/032
[36]
Simek, M. (2002) The Modelling of Streamer-Induced Emission in Atmospheric Pressure, Pulsed Positive Corona Discharge: N2 Second Positive and NO-Y Systems. Journal of Physics D: Applied Physics, 35, 1967-1980.
https://doi.org/10.1088/0022-3727/35/16/311
[37]
Luque, J. and Crosely, D.R. (1999) Transition Probabilities and Electronic Transition Moments of the A2Σ+-X2Π and D2Σ+-X2Π Systems of Nitric Oxide. The Journal of Chemical Physics, 111, 7405-7415. https://doi.org/10.1063/1.480064
[38]
McDermid, I.S. and Laudenslager, J.B. (1982) Radiative Lifetimes and Electronic Quenching Rate Constants for Single Photon Excited Rotational Levels of NO (A2Σ+, ν’=0). Journal of Quantitative Spectroscopy and Radiative Transfer, 27, 483-492.
[39]
Lepikhin, N.D., Klochko, A.V., Popov, N.A. and Starikovskaia, S.M. (2016) Long-Lived Plasma and Fast Quenching of N2(C3πu) by Electrons in the Afterglow of a Nanosecond Capillary Discharge in Nitrogen. Plasma Sources Science and Technology, 25, Article ID: 045003. https://doi.org/10.1088/0963-0252/25/4/045003