全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Numerical Simulation of a Stationary Solar Field Augmented by Plane Reflectors: Optimum Design Parameters

DOI: 10.4236/sgre.2017.87015, PP. 221-239

Keywords: Plane Reflector, Solar Energy Augmentation, Solar Collector Effective Length, Solar Radiation, Solar Field

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this study, a theoretical analysis of a solar field augmented by a fixed reflector placed in the front between the top of the preceding row and the bottom of the succeeding row is presented. An analytical model has been developed and used to estimate the solar irradiation. The analytical model is based on the anisotropic sky model, assuming an infinite length of collector and reflector rows. A simulation has been carried out in order to figure out the behavior of the solar field and to find the optimum design parameters of the solar field leading to a maximum solar energy augmentation. The results obtained are depicted synoptically as a relationship between the solar field design parameters and the latitude angle, and this presentation enables us to determine the optimum design parameters in order to achieve the intended percentage improvement of solar radiation incident on the solar field rows at any location on the Northern hemisphere, which presents the novelty of this research. Also we have introduced a new parameter named “the effective height of the collector”, which presents the portion of the collector’s height illuminated by the reflector. This parameter is very important especially in case of PV solar fields, because it determines the domain of the concentrated solar energy over the surface of the PV panel.

References

[1]  Baccoli, R., Mastino, C., Innamorati, R., Serra, L., Curreli, S., Ghiani, E., Ricciu, R. and Marini, M. (2015) A Mathematical Model of a Solar Collector Augmented by a Flat Plate above Reflector: Optimum Inclination of Collector and Reflector. Energy Procedia, 81, 205-214.
https://doi.org/10.1016/j.egypro.2015.12.085
[2]  Ahmad, G. and Hussein, H. (2001) Comparative Study of PV Modules with and without a Tilted Plane Reflector. Energy Conversion & Management, 42, 1327-1333.
https://doi.org/10.1016/S0196-8904(00)00139-4
[3]  Gelegenis, J., Axaopoulos, P., Misailidis, S., Giannakidis, G., Samarakou, M. and Bonaros, B. (2015) Feasibility for the Use of Flat Booster Reflectors in Various Photovoltaic. Installations International Journal of Renewable Energy Research, 5, 82-98.
[4]  Pavlovic, Z.T. and Kostic′, L. (2015) Variation of Reflected Radiation from All Reflectors of a Flat Plate Solar Collector during a Year. Energy, 80, 75-84.
https://doi.org/10.1016/j.energy.2014.11.044
[5]  Marko, P., Anne, M., Vincent, B., Michel, P., Martial, H. and Jordi, B. (2015) Experimental and Numerical Study of the Influence of String Mismatch on the Yield of PV Modules Augmented by Static Planar Reflectors. IEEE Journal of Photovoltaic, 5, 1-6.
[6]  Bengt, P. and Bjorn, K. (1993) External Reflectors for Large Solar Collector Arrays, Simulation Model and Experimental Results. Solar Energy, 51, 327-337.
https://doi.org/10.1016/0038-092X(93)90145-E
[7]  Rob, W.A., Andrew, P. and Joshua, M.P. (2015) Photovoltaic System Performance Enhancement with Nontracking Planar Concentrators: Experimental Results and Bidirectional Reflectance Function (BDRF)-Based Modelling. IEEE Journal of Photovoltaics, 5, 1626-1635.
https://doi.org/10.1109/JPHOTOV.2015.2478064
[8]  Hiroshi, T. (2015) Theoretical Analysis of Solar Thermal Collector and Flat Plate Bottom Reflector with a Gap between Them. Energy Reports, 1, 80-88.
https://doi.org/10.1016/j.egyr.2014.10.004
[9]  Hay, J.E. and Davies, J.A. (1980) Calculation of the Solar Radiation Incident on a Inclined Surface. Proceedings of the First Canadian Solar Radiation Data Workshop, Toronto, April 17-19 1980, p 59.
[10]  Duffie, J.A. and Beckman, W.A. (2013) Solar Engineering of Thermal Processes. 4th Edition, Wiley, New York.
https://doi.org/10.1002/9781118671603
[11]  Alsadi, S.Y. and Nassar Y.F. (2016) Correction of the ASHRAE Clear-Sky Model Parameters Based on Solar Radiation Measurements in the Arabic Countries. International Journal of Renewable Energy Technology Research, 5, 1-16.
[12]  Alsadi, S.Y., Nassar, Y.F. and Amer, K.A. (2016) General Polynomial for Optimizing the Tilt Angle of Flat Solar Energy Harvesters Based on ASHRAE Clear Sky Model in Mid and High Latitudes. Energy and Power, 6, 29-38.
[13]  Nassar, Y.F. and Alsadi, S.Y. (2016) View Factors of Flat Solar Collectors Array in Flat, Inclined, and Step-Like Solar Fields. Transactions of the ASME, 138, 1-8.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133