全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Assessment of Vegetation Productivity in the Northern Part of Nigeria

DOI: 10.4236/ajcc.2017.62018, PP. 360-373

Keywords: Climate Change, Regression-Kriging (RK) and Normalized Difference Vegetation Index (NDVI), Linear Model, Digital Elevation Model (DEM)

Full-Text   Cite this paper   Add to My Lib

Abstract:

Climate change is one of the greatest threats facing the global community and has been mainly induced by increasing atmospheric concentrations of greenhouse gases resulting from fossil fuel energy use and change in vegetation cover. This study used modelling techniques to determine how changes in climate could affect vegetation productivity in the northern part of Nigeria. Climatic parameters (Rainfall, Minimum and Maximum Temperatures) as well as coarse Normalised Difference Vegetation Index (NDVI) data for the growing seasons of 1981-2009 were utilised. Because of the relationship between climatic parameters and vegetation, Spatial method of data interpolation was tested. Results from the prediction elevation values ranged from -3e-9 to 2e-9. It was observed from prediction variance map that the values were higher in the upper portion of the study area which comprised Gusau (GS), Jos (JS), Katsina (KT), Minna (MN) and Zaria (ZR) and lower in the middle and lower parts of the study area which comprised mainly Funtua, Kano, Maiduguri and Sokoto. Further studies are encouraged with high resolution imageries and more meteorological data to cover the montane and forest zone of the country to determine the level of climatic impacts particularly on vegetation productivity in general.

References

[1]  Journel, A.G. and Huijbregts, J.C. (1978) Mining Geostatistics. Academic Press, Inc., London.
[2]  Goovaerts, P. (1997) Geostatistics for Natural Resources Evaluation. Oxford University Press, New York, 483 p.
[3]  Goovaerts, P. (1999) Geostatistics in Soil Science: State-of-the-Art and Perspectives. Geoderma, 89, 1-46.
[4]  Tabios, G.Q. and Salas, J.D. (1985) A Comparative Analysis of Techniques for Spatial Interpolation of Precipitation. Journal of the American Water Resources Association, 21, 365-380.
https://doi.org/10.1111/j.1752-1688.1985.tb00147.x
[5]  Dirks, K.N., Hay, J.E., Stow, C.D. and Harris, D. (1998) High-Resolution Studies of Rainfall on Norfolk Island Part II: Interpolation of Rainfall Data. Journal of Hydrology, 208, 187-193.
[6]  Borga, M. and Vizzaccaro, A. (1997) On the Interpolation of Hydrologic Variables: Formal Equivalence of Multiquadratic Surface Fitting and Kriging. Journal of Hydrology, 195, 160-171.
[7]  Creutin, J.D., Delrieu, G. and Lebel, T. (1988) Rain Measurement by Raingauge-Radar Combination: A Geostatistical Approach. Journal of Atmospheric and Oceanic Technology, 5, 102-115.
https://doi.org/10.1175/1520-0426(1988)005<0102:RMBRRC>2.0.CO;2
[8]  Azimi-Zonooz, A., Krajewski, W.F., Bowles, D.S. and Seo, D.J. (1989) Spatial Rainfall Estimation by Linear and Non-Linear Cokriging of Radar-Rainfall and Rain Gauge Data. Stochastic Hydrology and Hydraulics, 3, 51-67.
https://doi.org/10.1007/BF01543427
[9]  Fortin, M.J. and Dale, M.R.T. (2005) Spatial Analysis. Cambridge University Press, Cambridge.
[10]  Krige, D.G. (1966) Two-Dimensional Weighted Moving Average Trend Surfaces for Ore Valuations. Proceedings of Symposium on Mathematical Statstics and Computer Applications, Ore Valuation, 13-38.
[11]  Bailey, T.C. and Gatrell, A.C. (1995) Interactive Spatial Data Analysis. Longman Scientific & Technical; J. Wiley, Harlow Essex, England.
[12]  Hengl, T., Gerard, B.M. and Rossiter, D.G. (2007) About Regression-Kriging: From Equations to Case Studies. Computers & Geosciences, 33, 1301-1315.
https://doi.org/10.1016/j.cageo.2007.05.001
[13]  Knotters, M., Brus, D. and Voshaar, J. (1995) A Comparison of Kriging, Co-Kriging and Kriging Combined with Regression for Spatial Interpolation of Horizon Depth with Censored Observations. Geoderma, 67, 227-246.
https://doi.org/10.1016/0016-7061(95)00011-C
[14]  Bishop, T. and Mc Bratney, A. (2001) A Comparison of Prediction Methods for the Creation of Field-Extent Soil Property Maps. Geoderma, 103, 149-160.
https://doi.org/10.1016/S0016-7061(01)00074-X
[15]  Bourennane, H. and King, D. (2003) Using Multiple External Drifts to Estimate a Soil Variable. Geoderma, 114, 1-18.
https://doi.org/10.1016/S0016-7061(02)00338-5
[16]  Lloyd, C.D. (2005) Assessing the Effect of Integrating Elevation Data into the Estimation of Monthly Precipitation in Great Britain. Journal of Hydrology, 308, 128-150.
https://doi.org/10.1016/j.jhydrol.2004.10.026
[17]  Yemefack, M., Rossiter, D.G. and Njomgang, R. (2005) Multi-Scale Characterization of Soil Variability within an Agricultural Landscape Mosaic System in Southern Cameroon. Geodermal, 25, 117-143.
https://doi.org/10.1016/j.geoderma.2004.07.007
[18]  Leopold, U., Heuvelink, G.B., Tiktak, A., Finke, P.A. and Schoumans, O. (2005) Accounting for Change of Support in Spatial Accuracy Assessment of Modelled Soil Mineral Phosphorous Concentration. Geoderma, 130, 368-386.
https://doi.org/10.1016/j.geoderma.2005.02.008
[19]  Berterretche, M., Hudak, A.T., Cohen, W.B., Maiersperger, T.K., Gower, S.T. and Dungan, J. (2005) Comparison of Regression and Geostatistical Methods for Mapping Leaf Area Index (LAI) with Landsat ETM Data over a Boreal Forest. Remote Sensing of Environment, 96, 49-61.
https://doi.org/10.1016/j.rse.2005.01.014
[20]  Pleydell, D.R.J., Raoul, F., Tourneux, F., Danson, F.M., Graham, A.J., Craig, P.S. and Giraudoux, P. (2004) Modelling the Spatial Distribution of Echinococcusmultilo cularis Infection in Foxes. Acta Tropica, 91, 253-265.
https://doi.org/10.1016/j.actatropica.2004.05.004
[21]  Desbarats, A.J., Logan, C.E., Hinton, M.J. and Sharpe, D.R. (2002) On the Kriging of Water Table Elevations Using Collateral Information from a Digital Elevation Model. Journal of Hydrology, 255, 25-38.
https://doi.org/10.1016/S0022-1694(01)00504-2
[22]  Finke, P.A., Brus, D.J., Bierkens, M.F.P., Hoagland, T., Knotters, M. and Vries, F. (2004) Mapping Groundwater Dynamics Using Multiple Sources of Exhaustive High Resolution Data. Geoderma, 123, 23-39.
https://doi.org/10.1016/j.geoderma.2004.01.025
[23]  Rivoirard, J. (2002) On the Structural Link between Variables in Kriging with External Drift. Mathematical Geology, 34, 797-808.
[24]  Odeh, I., McBratney, A. and Chittleborough, D. (1995) Further Results on Prediction of Soil Properties from Terrain Attributes: Heterotopic Cokriging and Regression-Kriging. Geoderma, 67, 215-226.
https://doi.org/10.1023/A:1020972510120
[25]  Hengl, T., Heuvelink, G. and Stein, A. (2004) A Generic Framework for Spatial Prediction of Soil Variables Based on Regression-Kriging. Geoderma, 122, 75-93.
https://doi.org/10.1016/0016-7061(95)00007-B
[26]  Matheron, G. (1969) Le krigeage universel (Universal kriging) Vol. 1. Cahiers du Centre de Morphologie Mathematique, Ecole des Mines de Paris, Fontainebleau, 83 p.
https://doi.org/10.1016/j.geoderma.2003.08.018
[27]  Christensen, R. (2001) Linear Models for Multivariate Time Series and Spatial Data. 2nd Edition. Springer, New York, 398 p.
[28]  Deutsch, C. and Journel, A. (1998) GSLIB: Geostatistical Software and User’s Guide. 2nd Edition, Oxford University Press, New York, 369 p.
[29]  Wackernagel, H. (1998) Multivariate Geostatistics: An Introduction with Applications. 2nd Edition, Springer, Berlin, 291 p.
https://doi.org/10.1007/978-3-662-03550-4
[30]  Papritz, A. and Stein, A. (1999) Spatial Prediction by Linear Kriging. In: Stein, A., van der Meer, F. and Gorte, B., Eds., Spatial Statistics for Remote Sensing, Kluwer Academic Publishers, Dodrecht, 83-113.
https://doi.org/10.1007/0-306-47647-9_6
[31]  Chiles, J. and Delfiner, P. (1999) Geostatistics: Modeling Spatial Uncertainty. Wiley, New York, 695 p.
https://doi.org/10.1002/9780470316993
[32]  Webster, R. and Oliver, M. (2001) Geostatistics for Environmental Scientists Statistics in Practice. Wiley, Chichester, 271 p.
[33]  Ahmed, S. and de Marsily, G. (1987) Comparison of Geostatistical Methods for Estimating Transmissivity Using Data on Transmissivity and Specific Capacity. Water Resources Research, 23, 1717-1737.
https://doi.org/10.1029/WR023i009p01717
[34]  Wu, J., Norvell, W.A. and Welch, R.M. (2006) Kriging on Highly Skewed Data for DTPA-Extractable Soil Zn with Auxiliary Information for pH and Organic Carbon. Geoderma, 134, 187-199.
https://doi.org/10.1016/j.geoderma.2005.11.002
[35]  Raspa, G., Tucci, M. and Bruno, R. (1997) Reconstruction of Rainfall Fields by Combining Ground Rain Gauges Data with Radar Maps Using External Drift Method. In: Baafi, E.Y. and Schofield, N.A., Eds., Geostatistics Wollongong’96, Kluwer Academic, Dordrecht, 941-950.
https://doi.org/10.1007/978-94-011-5726-1_57
[36]  Hevesi, J.A., Flint, A.L. and Istok, J.D. (1992) Precipitation Estimation in Mountainous Terrain Using Multivariate Geostatistics. Part I: Structural Analysis. Journal of Applied Meteorology, 31, 661-676.
https://doi.org/10.1175/1520-0450(1992)031<0661:PEIMTU>2.0.CO;2
[37]  Daly, C., Neilson, R.P. and Phillips, D.L. (1994) A Statistical Topographic Model for Mapping Climatological Precipitation over Mountainous Terrain. Journal of Applied Meteorology, 33, 140-158.
https://doi.org/10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2
[38]  Dakata, F.A.G. and Yelwa, S.A. (2012) An Assessment of Mean and Inter-Seasonal Variation during Growing Season across Kano Region, Nigeria Using Normalized Difference Vegetation Index Derived from SPOT Satellite Data. Global Advanced Research Journal of Social Sciences, 3, 059-064.
[39]  Abtew, W., Obeysekera, J. and Shih, G. (1993) Spatial Analysis for Monthly Rainfall in South Florida. Water Resources Bulletin, 29, 179-188.
https://doi.org/10.1111/j.1752-1688.1993.tb03199.x
[40]  Hosseini, E., Gallichand, J. and Marcotte, D. (1994) Theoretical and Experimental Performance of Spatial Interpolation Methods for Soil Salinity Analysis. Transaction of the ASAE, 36, 1799-1807.
https://doi.org/10.13031/2013.28269
[41]  Voltz, M. and Goulard, M. (1994) Spatial Interpolation of Soil Moisture Retention Curves. Geoderma, 62, 109-123.
https://doi.org/10.1016/0016-7061(94)90031-0
[42]  McKenzie, N. and Ryan, P. (1999) Spatial Prediction of Soil Properties Using Environmental Correlation. Geoderma, 89, 67-94.
https://doi.org/10.1016/S0016-7061(98)00137-2
[43]  Draper, N. and Smith, H. (1981) Applied Regression Analysis. 2nd Edition, Wiley, New York, 709 p.
[44]  Christensen, R. (1996) Plane Answers to Complex Questions: The Theory of Linear Models. 2nd Edition, Springer, New York, 452 p.
https://doi.org/10.1007/978-1-4757-2477-6
[45]  Cressie, N. (1993) Statistics for Spatial Data. Revised Edition, Wiley, New York, 900 p.
[46]  Kitanidis, P. (1994) Generalized Covariance Functions in Estimation. Mathematical Geo-logy, 25, 525-540.
https://doi.org/10.1007/BF00890244
[47]  Pebesma, E.J. (2004) Multivariable Geostatistics in S: The GSTAT Package. Computers and Geosciences, 30, 683-691.
https://doi.org/10.1016/j.cageo.2004.03.012
[48]  Fuller, D.O. (1998) Trends in NDVI Time Series and Their Relationship to Rangeland and Crop Production in Senegal, 1987-1993. International Journal of Remote Sensing, 19, 2013-2018.
https://doi.org/10.1080/014311698215135
[49]  Yelwa, S.A. and Isah, A.D. (2010) Analysis of Trends in Vegetation AVHRR-NDVI Data across Sokoto State 1982-1986 Using Remote Sensing and GIS. Nigerian Journal of Basic and Applied Science, 18, 90-96.
https://doi.org/10.4314/njbas.v18i1.56849
[50]  Li, B., Tao, S. and Dawson, R.W. (2002) Relation between AVHRR NDVI and Eco-Climatic Parameters in China. International Journal of Remote Sensing, 23, 989-999.
https://doi.org/10.1080/014311602753474192

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133