全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Mathematical Overview of Hypersphere World-Universe Model

DOI: 10.4236/jhepgc.2017.33033, PP. 415-437

Keywords: Hypersphere World-Universe Model, Primary Cosmological Parameters, Medium of the World, Macroobjects Structure, Gravitoelectromagnetism, Dark Matter Particles, Intergalactic Plasma, Microwave Background Radiation, Far-Infrared Background Radiation, Fast Radio Bursts, Emergent Phenomena, CODATA

Full-Text   Cite this paper   Add to My Lib

Abstract:

The Hypersphere World-Universe Model (WUM) provides a mathematical framework that allows calculating the primary cosmological parameters of the World which are in good agreement with the most recent measurements and observations. WUM explains the experimental data accumulated in the field of Cosmology and Astroparticle Physics over the last decades: the age of the World and critical energy density; the gravitational parameter and Hubble’s parameter; temperatures of the cosmic microwave background radiation and the peak of the far-infrared background radiation; the concentration of intergalactic plasma and time delay of Fast Radio Bursts. Additionally, the model predicts masses of dark matter particles, photons, and neutrinos; proposes new types of particle interactions (Super Weak and Extremely Weak); shows inter-connectivity of primary cosmological parameters of the World. WUM proposes to introduce a new fundamental parameter Q in the CODATA internationally recommended values. This paper is the summary of the mathematical results obtained in [1]-[4].

References

[1]  Netchitailo, V.S. (2016) Overview of Hypersphere World-Universe Model. Journal of High Energy Physics, Gravitation and Cosmology, 2, 593.
https://doi.org/10.4236/jhepgc.2016.24052
[2]  Netchitailo, V.S. (2015) 5D World-Universe Model. Space-Time-Energy. Journal of High Energy Physics, Gravitation and Cosmology, 1, 25.
https://doi.org/10.4236/jhepgc.2015.11003
[3]  Netchitailo, V.S. (2016) 5D World-Universe Model. Gravitation. Journal of High Energy Physics, Gravitation and Cosmology, 2, 328.
https://doi.org/10.4236/jhepgc.2016.23031
[4]  Netchitailo, V.S. (2017) Burst Astrophysics. Journal of High Energy Physics, Gravitation and Cosmology, 3, 157-166.
https://doi.org/10.4236/jhepgc.2017.32016
[5]  Bennett, C.L., et al. (2013) Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results.
[6]  Mirizzi, A., Raffelt, G.G. and Serpico, P.D. (2006) Photon-Axion Conversion in Intergalactic Magnetic Fields and Cosmological Consequences.
[7]  Spergel, D.N., et al. (2003) First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters.
[8]  Bonetti, L., et al. (2017) FRB 121102 Casts New Light on the Photon Mass.
[9]  Keane, E.F., et al. (2016) A Fast Radio Burst Host Galaxy.
[10]  Fixsen, D.J. (2009) The Temperature of the Cosmic Microwave Background.
http://arxiv.org/abs/0911.1955
https://doi.org/10.1088/0004-637x/707/2/916
[11]  Masui, K., et al. (2015) Dense Magnetized Plasma Associated with a Fast Radio Burst. Nature, 528, 523.
https://doi.org/10.1038/nature15769
[12]  Lorimer, D.R., et al. (2007) A Bright Millisecond Radio Burst of Extragalactic Origin. Science, 318, 777.
https://doi.org/10.1126/science.1147532
[13]  Kajita, T. (1998) Atmospheric Neutrino Results from Super-Kamiokande and Kamiokande—Evidence for νμ Oscillations.
[14]  McDonald, A.B. (2003) Neutrino Properties from Measurements Using Astrophysical and Terrestrial Sources.
[15]  Netchitailo, V.S. (2016) 5D World-Universe Model. Neutrinos. The World. Journal of High Energy Physics, Gravitation and Cosmology, 2, 1.
https://doi.org/10.4236/jhepgc.2016.21001
[16]  Sanchez, M. (2003) Oscillation Analysis of Atmospheric Neutrinos in Soudan 2. PhD Thesis, Tufts University, Medford/Somerville.
http://nu.physics.iastate.edu/Site/Bio_files/thesis.pdf
https://doi.org/10.2172/815661
[17]  Kaus, P. and Meshkov, S. (2003) Neutrino Mass Matrix and Hierarchy. AIP Conference Proceedings, 672, 117.
https://doi.org/10.1063/1.1594399
[18]  Battye, R.A. and Moss, A. (2014) Evidence for Massive Neutrinos from CMB and Lensing Observations.
[19]  Landau, L.D. and Lifshitz, E.M. (1980) Statistical Physics. 3rd Edition, Part 1, Vol. 5, Butterworth-Heinemann, Oxford.
[20]  Maurette, M., Cragin, J. and Taylor, S. (1992) Cosmic Dust in 50 KG Blocks of Blue Ice from Cap-Prudhomme and Queen Alexandra Range, Antarctica. Meteoritics, 27, 257.
[21]  Saxton, J.M., Knotts, S.F., Turner, G. and Maurette, M. (1992) 40Ar/39Ar Studies of Antarctic Micrometeorites. Meteoritics, 27, 285.
[22]  Jackson, A.A. and Zook, H.A. (1991) Dust Particles from Comets and Asteroids: Parent-Daughter Relationships. Abstracts of the Lunar and Planetary Science Conference, 22, 629-630.
[23]  Netchitailo, V.S. (2015) 5D World-Universe Model. Multicomponent Dark Matter. Journal of High Energy Physics, Gravitation and Cosmology, 1, 55-71.
https://doi.org/10.4236/jhepgc.2015.12006
[24]  Lagache, G., Abergel, A., Boulanger, F., Désert, F.X. and Puget, J.-L. (1999) First Detection of the Warm Ionized Medium Dust Emission. Implication for the Cosmic Far-Infrared Background. Astronomy and Astrophysics, 344, 322-332.
[25]  Finkbeiner, D.P., Davis, M. and Schlegel, D.J. (2000) Detection of a Far IR Excess with DIRBE at 60 and 100 Microns. The Astrophysical Journal, 544, 81-97.
https://doi.org/10.1086/317177
[26]  Siegel, P.H. (2002) Terahertz Technology. IEEE Transactions on Microwave Theory and Techniques, 50, 910-928.
https://doi.org/10.1109/22.989974
[27]  Phillips, T.G. and Keene, J. (1992) Submillimeter Astronomy [Heterodyne Spectroscopy]. Proceedings of the IEEE, 80, 1662-1678.
https://doi.org/10.1109/5.175248
[28]  Dupac, X., et al. (2003) The Complete Submillimeter Spectrum of NGC 891.
[29]  Aguirre, J.E., Bezaire, J.J., Cheng, E.S., Cottingham, D.A., Cordone, S.S., Crawford, T.M., et al. (2003) The Spectrum of Integrated Millimeter Flux of the Magellanic Clouds and 30-Doradus from TopHat and DIRBE Data. The Astrophysical Journal, 596, 273-286.
https://doi.org/10.1086/377601
[30]  Pope, A., Scott, D., Dickinson, M., Chary, R.-R., Morrison, G., Borys, C. and Sajina, A. (2006) Using Spitzer to Probe the Nature of Submillimetre Galaxies in GOODS-N.
[31]  Marshall, J.A., Herter, T.L., Armus, L., Charmandaris, V., Spoon, H.W.W., Bernard-Salas, J. and Houck, J.R. (2007) Decomposing Dusty Galaxies. I. Multi-Component Spectral Energy Distribution Fitting. The Astrophysical Journal, 670, 129-155
https://doi.org/10.1086/521588
[32]  Devlin, M.J., Ade, P.A.R., Aretxaga, I., Bock, J.J., Chapin, E.L., Griffin, M., et al. (2009) Over Half of the Far-Infrared Background Light Comes from Galaxies at z ≥ 1.2. Nature, 458, 737-739.
https://doi.org/10.1038/nature07918
[33]  Chapin, E.L., Chapman, S.C., Coppin, K.E., Devlin, M.J., Dunlop, J.S., Greve, T.R., et al. (2011) A Joint Analysis of BLAST 250-500 um and LABOCA 870 um Observations in the Extended Chandra Deep Field-South. Monthly Notices of the Royal Astronomical Society, 411, 505-549.
https://doi.org/10.1111/j.1365-2966.2010.17697.x
[34]  Mackenzie, T., Braglia, F.G., Gibb, A.G., Scott, D., Jenness, T., Serjeant, S., et al. (2011) A Pilot Study for the SCUBA-2 “All-Sky” Survey. Monthly Notices of the Royal Astronomical Society, 415, 1950-1960.
https://doi.org/10.1111/j.1365-2966.2011.18840.x
[35]  Serra, P., Lagache, G., Doré, O., Pullen, A. and White, M. (2014) Cross-Correlation of Cosmic Infrared Background Anisotropies with Large Scale Structures. Astronomy & Astrophysics, 570, A98.
https://doi.org/10.1051/0004-6361/201423958
[36]  Sin, S.-J. (1992) Late Time Cosmological Phase Transition and Galactic Halo as Bose-Liquid.
[37]  Robles, V.H. and Matos, M. (2012) Flat Central Density Profile and Constant DM Surface Density in Galaxies from Scalar Field Dark Matter. Monthly Notices of the Royal Astronomical Society, 422, 282-289.
https://doi.org/10.1111/j.1365-2966.2012.20603.x
[38]  Magana, J. and Matos, T. (2012) A Brief Review of the Scalar Field Dark Matter Model. Journal of Physics: Conference Series, 378, Article ID: 012012.
https://doi.org/10.1088/1742-6596/378/1/012012
[39]  Suarez, A., Robles, V.H. and Matos, T. (2013) A Review on the Scalar Field/Bose-Einstein Condensate Dark Matter Model. In: González, C.M., Aguilar, J.E.M. and Barrera, L.M.R., Eds., Accelerated Cosmic Expansion, Springer, Berlin, 107-142.
[40]  Diez-Tejedor, A., Gonzalez-Morales, A.X. and Profumo, S. (2014) Dwarf Spheroidal Galaxies and Bose-Einstein Condensate Dark Matter. Physical Review D, 90, Article ID: 043517.
https://doi.org/10.1103/PhysRevD.90.043517
[41]  Sikivie, P. and Yang, Q. (2009) Bose-Einstein Condensation of Dark Matter Axions. Physical Review Letters, 103, Article ID: 111301.
https://doi.org/10.1103/physrevlett.103.111301
[42]  Erken, O., Sikivie, P., Tam, H. and Yang, Q. (2011) Axion BEC Dark Matter.
[43]  Banik, N. and Sikivie, P. (2013) Axions and the Galactic Angular Momentum Distribution. Physical Review D, 88, Article ID: 123517.
https://doi.org/10.1103/PhysRevD.88.123517
[44]  Davidson, S. and Elmer, M. (2013) Bose Einstein Condensation of the Classical Axion Field in Cosmology? Journal of Cosmology and Astroparticle Physics, 2013, Article No. 034.
https://doi.org/10.1088/1475-7516/2013/12/034
[45]  Li, M.-H. and Li, Z.-B. (2014) Constraints on Bose-Einstein-Condensed Axion Dark Matter from the HI nearby Galaxy Survey Data. Physical Review D, 89, Article ID: 103512.
https://doi.org/10.1103/physrevd.89.103512
[46]  Morikawa, M. (2004) Structure Formation through Cosmic Bose Einstein Condensation-Unified View of Dark Matter and Energy. 22nd Texas Symposium on Relativistic Astrophysics, Stanford, 13-17 December 2004, 1122.
[47]  Garay, L.J., Anglin, J.R., Cirac, J.I. and Zoller, P. (2000) Sonic Analog of Gravitational Black Holes in Bose-Einstein Condensates. Physical Review Letters, 85, 4643-4647.
https://doi.org/10.1103/PhysRevLett.85.4643
[48]  Ueda, M. and Huang, K. (1998) Fate of a Bose-Einstein Condensate with Attractive Interaction.
[49]  Hujeirat, A.A. (2011) On the Viability of Gravitational Bose-Einstein Condensates as Alternatives to Supermassive Black Holes. Monthly Notices of the Royal Astronomical Society, 423, 2893-2900.
https://doi.org/10.1111/j.1365-2966.2012.21102.x
[50]  Kuhnel, F. and Sundborg, B. (2014) Decay of Graviton Condensates and Their Generalizations in Arbitrary Dimensions. Physical Review D, 90, Article ID: 064025.
https://doi.org/10.1103/PhysRevD.90.064025
[51]  Wright, E.L. (2001) Cosmic InfraRed Background Radiation.
http://www.astro.ucla.edu/~wright/CIBR/
[52]  Corda, C. (2009) Interferometric Detection of Gravitational Waves: The Definitive Test for General Relativity. International Journal of Modern Physics D, 18, 2275.
https://doi.org/10.1142/s0218271809015904
[53]  D’Souza, I.A. and Kalman, C.S. (1992) Preons: Models of Leptons, Quarks and Gauge Bosons as Composite Objects. World Scientific, Singapore.
https://doi.org/10.1142/1700
[54]  NASA’s Planck Project Office (2013) Planck Mission Brings Universe into Sharp Focus.
https://www.nasa.gov/mission_pages/planck/news/planck20130321.html#.VZ4k5_lViko
[55]  Feng, W.Z., Mazumdar, A. and Nath, P. (2013) Baryogenesis from Dark Matter. Physical Review D, 88, Article ID: 036014.
http://arxiv.org/abs/1302.0012
https://doi.org/10.1103/physrevd.88.036014
[56]  Feng, W.Z., Nath, P. and Peim, G. (2012) Cosmic Coincidence and Asymmetric Dark Matter in a Stueckelberg Extension. Physical Review D, 85, Article ID: 115016.
http://arxiv.org/abs/1204.5752
https://doi.org/10.1103/physrevd.85.115016
[57]  Narain, G., Schaffner-Bielich, J. and Mishustin, I.N. (2006) Compact Stars Made of Fermionic Dark Matter. Physical Review D, 74, Article ID: 063003. http://arxiv.org/abs/astro-ph/0605724
https://doi.org/10.1103/physrevd.74.063003
[58]  Wolfenstein, L. (1994) Superweak Interactions. Comments on Nuclear and Particle Physics, 21, 275.
[59]  Yamaguchi, Y. (1959) Possibility of Super-Weak Interactions and the Stability of Matter. Progress of Theoretical Physics, 22, 373.
https://doi.org/10.1143/PTP.22.373
[60]  Kelley, K.F. (1999) Measurement of the CP Violation Parameter sin2β. PhD Thesis, MIT.
[61]  Bian, B.A., et al. (2006) Determination of the NN Cross Section, Symmetry Energy, and Studying of Weak Interaction in CSR.
http://ribll.impcas.ac.cn/conf/ccast05/doc/RIB05-zhangfengshou.pdf

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133