Synthesis of conductive polymer
poly([thiophene]-[benzo[1,2,3]thiadiazole][thiophene]) (abbreviated as P(T-Btdaz-T)) was achieved by
electrochemical polymerization in hydroxypropyl cellulose (HPC)/N,N-dimethylformamide
(DMF) in liquid crystal state. The polymer thus obtained shows fingerprint
texture, which is derived from helical structure of the HPC in cholesteric
liquid crystal state. Fourier transform infrared spectroscopy measurements
revealed that the polymer film is P(T-Btdaz-T)/HPC composite. Circular
dichroism optical absorption spectroscopy measurements show that the polymer
has the optical activity. Next,
electrochemical polymerization of 3,4-ethylene-dioxythiophene (EDOT) was carried out in columnar
phase liquid crystal. The polymer transcribes the columnar structure and shows optical
structure resembling columnar liquid crystal electrolyte solution.
References
[1]
Karikomi, M., Kitamura, C., Tanaka, S. and Yamashita, Y. (1995) New Narrow-Bandgap Polymer Composed of Benzobis(1,2,5-Thiadiazole) and Thiophenes. Journal of the American Chemical Society, 117, 6791-6792. https://doi.org/10.1021/ja00130a024
[2]
Kitamura, C., Tanaka, S. and Yamashita, Y. (1996) Design of Narrow-Bandgap Polymers. Syntheses and Properties of Monomers and Polymers Containing Aromatic-Donor and o-quinoid-Acceptor Units. Chemistry of Materials, 8, 570-578. https://doi.org/10.1021/cm950467m
[3]
Jayakannan, M., Van Hal, P.A. and Janssen, R.A. (2002) Synthesis and Structure-Property Relationship of New Donor-Acceptor-Type Conjugated Monomers and Polymers on the Basis of Thiophene and Benzothiadiazole. Journal of Polymer Science Part A: Polymer Chemistry, 40, 251-261. https://doi.org/10.1002/pola.10107
[4]
Boas, U., Dhanabalan, A., Greve, D.R. and Meijer, E.W. (2001) Synthesis of Thio-Phene-Based Building Blocks via Facile α-Monoiodination. Synlett, 5, 0634-0636.
[5]
Van Mullekom, H.A.M., Vekemans, J.A.J.M. and Meijer, E.W. (1998) Band-Gap Engineering of Donor-Acceptor-Substituted π-Conjugated Polymers. Chemistry A European Journal, 4, 1235-1243. https://doi.org/10.1002/(SICI)1521-3765(19980710)4:7<1235::AID-CHEM1235>3.0.CO;2-4
[6]
Hou, Q., Xu, Y., Yang, W., Yuan, M., Peng, J. and Cao, Y. (2002) Novel Red-Emitting Fluorene-Based Copolymers. Journal of Materials Chemistry, 12, 2887-2892. https://doi.org/10.1039/b203862e
[7]
Yamashita, Y., Suzuki, K. and Tomura, M. (2003) Novel Electron Acceptors Containing Thiadiazole and Thiophene Units. Synthetic Metals, 133, 341-343. https://doi.org/10.1016/S0379-6779(02)00332-6
[8]
Svensson, M., Zhang, F., Veenstra, S.C., Verhees, W.J., Hummelen, J.C., Kroon, J.M. and Andersson, M.R. (2003) High-Performance Polymer Solar Cells of an Alternating Polyfluorene Copolymer and a Fullerene Serivative. Advanced Materials, 15, 988-991. https://doi.org/10.1002/adma.200304150
[9]
Niu, Y.H., Huang, J.I.A.N. and Cao, Y.O.N.G. (2003) High-Efficiency Polymer Light-Emitting Diodes with Stable Saturated Red Emission: Use of Carbazole-Based Copolymer Blends in a Poly(p-Phenylenevinylene) Derivative. Advanced Materials, 15, 807-811. https://doi.org/10.1002/adma.200304619
[10]
Kato, S.I., Matsumoto, T., Ishi-i, T., Thiemann, T., Shigeiwa, M., Gorohmaru, H. and Mataka, S. (2004) Strongly Red-Fluorescent Novel Donor-π-Bridge-Acceptor-π-Bridge-Donor (D-π-A-π-D) Type 2,1,3-benzothiadiazoles with Enhanced Two-Photon Absorption Cross-Sections. Chemical Communications, 20, 2342-2343. https://doi.org/10.1039/B410016F
[11]
Zhou, Q., Hou, Q., Zheng, L., Deng, X., Yu, G. and Cao, Y. (2004) Fluorene-Based Low Band-Gap Copolymers for High Performance Photovoltaic Devices. Applied Physics Letters, 84, 1653-1655. https://doi.org/10.1063/1.1667614
[12]
Hou, J., Chen, H.Y., Zhang, S., Li, G. and Yang, Y. (2008) Synthesis, Characterization, and Photovoltaic Properties of a Low Band Gap Polymer Based on Silole-Containing Polythiophenes and 2,1,3-Benzothiadiazole. Journal of the American Chemical Society, 130, 16144-16145. https://doi.org/10.1021/ja806687u
[13]
Zhou, H., Yang, L., Stuart, A.C., Price, S.C., Liu, S. and You, W. (2011) Development of Fluorinated Benzothiadiazole as a Structural Unit for a Polymer Solar Cell of 7% Efficiency. Angewandte Chemie, 123, 3051-3054. https://doi.org/10.1002/ange.201005451
[14]
Bundgaard, E. and Krebs, F.C. (2006) Low-Band-Gap Conjugated Polymers Based on Thiophene, Benzothiadiazole, and Benzobis (Thiadiazole). Macromolecules, 39, 2823-2831. https://doi.org/10.1021/ma052683e
[15]
Sonar, P., Singh, S.P., Li, Y., Soh, M.S. and Dodabalapur, A. (2010) A Low-Bandgap Diketopyrrolopyrrole-Benzothiadiazole-Based Copolymer for High-Mobility Ambipolar Organic Thin-Film Transistors. Advanced Materials, 22, 5409-5413. https://doi.org/10.1002/adma.201002973
[16]
Herguth, P., Jiang, X., Liu, M.S. and Jen, A.K.Y. (2002) Highly Efficient Fluorene- and Benzothiadiazole-Based Conjugated Copolymers for Polymer Light-Emitting Diodes. Macromolecules, 35, 6094-6100. https://doi.org/10.1021/ma020405z
[17]
Peng, Q., Liu, X., Su, D., Fu, G., Xu, J. and Dai, L. (2011) Novel Benzo[1,2-b:4,5-b’]-Dithiophene-Benzothiadiazole Derivatives with Variable Side Chains for High-Performance Solar Cells. Advanced Materials, 23, 4554-4558. https://doi.org/10.1002/adma.201101933
[18]
Tamilavan, V., Kim, S., Agneeswari, R., Lee, D.Y., Cho, S., Jin, Y. and Hyun, M.H. (2016) Benzodithiophene Based Ternary Copolymer Containing Covalently Bonded Pyrrolo[3,4-c]Pyrrole-1,3-Dione and Benzothiadiazole for Efficient Polymer Solar Cells Utilizing High Energy Sunlight. Organic Electronics, 38, 283-291. https://doi.org/10.1016/j.orgel.2016.08.028
[19]
Deng, C. and Ling, J. (2016) Amphiphilic Copolymers of Polyfluorene Methacrylates Exhibiting Tunable Emissions for Ink-Jet Printing. Macromolecular Rapid Communications, 37, 1352-1356. https://doi.org/10.1002/marc.201600188
[20]
Doyranli, C., Colak, B., Lacinel, G., Can, M., Koyuncu, F.B. and Koyuncu, S. (2016) Effect of the Planar Center Moiety for a Donor-Acceptor Polymeric Electrochrome. Polymer, 108, 423-431. https://doi.org/10.1016/j.polymer.2016.12.016
[21]
Naoto, E. and Hiromasa, G. (2017) Chiral-Electroactive Low-Bandgap Polymer Composite. Journal of Materials Science and Chemical Engineering, 5, 1-10.
[22]
Werbowyj, R.S. and Gray, D.G. (1976) Liquid Crystalline Structure in Aqueous Hydroxypropyl Cellulose Solutions. Molecular Crystals and Liquid Crystals, 34, 97-103. https://doi.org/10.1080/15421407608083894
[23]
Chang, S.A. and Gray, D.G. (1978) The Surface Tension of Aqueous Hydroxypropyl Cellulose Solutions. Journal of Colloid and Interface Science, 67, 255-265. https://doi.org/10.1016/0021-9797(78)90010-3
[24]
Werbowyj, R.S. and Gray, D.G. (1984) Optical Properties of Hydroxypropyl Cellulose Liquid Crystals. I. Cholesteric Pitch and Polymer Concentration. Macromolecules, 17, 1512-1520. https://doi.org/10.1021/ma00138a016
[25]
Fortin, S. and Charlet, G. (1989) Phase Diagram of Aqueous Solutions of (Hydroxy-propyl)Cellulose. Macromolecules, 22, 2286-2292. https://doi.org/10.1021/ma00195a050
[26]
Guido, S. (1995) Phase Behavior of Aqueous Solutions of Hydroxypropyl Cellulose. Macromolecules, 28, 4530-4539. https://doi.org/10.1021/ma00117a023