In this paper, the orientation of grains which adjacent to a developed opening crack was investigated by EBSD. A definition of θ has been came up with which represents the angle between the principal stress plane and each plane of the grains. Smaller θ means easier to crack. It gave a good explanation of the crack propagation throughout the grains. It also revealed that propagation path is along with the plane. This finding will give a prediction of tear properties and help us understanding the cracking mechanism and the behavior of tearing.
References
[1]
Griffith, A.A. (1921) The Phenomena of Rupture and Flow in Solids. Philosophical Transactions of the Royal Society of London Series A, Containing Papers of a Mathematical or Physical Character, 221, 163-198.
https://doi.org/10.1098/rsta.1921.0006
[2]
Flügge, S. (1958) Elasticity and Plasticity/Elastizität und Plastizität. Springer Berlin Heidelberg, Berlin.
[3]
Herbig, M. (2011) 3D Short Fatigue Crack Investigation in Beta Titanium Alloys Using Phase and Diffraction Contrast Tomography. INSA de Lyon, Lyon.
[4]
Zhou, P., Zhou, J., Ye, Z., Hong, X., Huang, H. and Xu, W. (2016) Effect of Grain Size and Misorientation Angle on Fatigue Crack Growth of Nanocrystalline Materials. Materials Science and Engineering: A, 663, 1-7.
https://doi.org/10.1016/j.msea.2016.03.105
[5]
Wu, S.C., Yu, C., Yu, P.S., Buffière, J.Y., Helfen, L. and Fu, Y.N. (2016) Corner Fatigue Cracking Behavior of Hybrid Laser AA7020 Welds by Synchrotron X-Ray Computed Microtomography. Materials Science and Engineering: A, 651, 604-614.
https://doi.org/10.1016/j.msea.2015.11.011
[6]
Proudhon, H., Li, J., Wang, F., Roos, A., Chiaruttini, V. and Forest, S. (2016) 3D Simulation of Short Fatigue Crack Propagation by Finite Element Crystal Plasticity and Remeshing. International Journal of Fatigue, 82, 238-246.
https://doi.org/10.1016/j.ijfatigue.2015.05.022
[7]
Zhang, T., Bao, R., Lu, S. and Fei, B. (2016) Investigation of Fatigue Crack Propagation Mechanisms of Branching Crack in 2324-T39 Aluminum Alloy Thin Plates under Cyclic Loading Spectrum. International Journal of Fatigue, 82, 602-615.
https://doi.org/10.1016/j.ijfatigue.2015.09.017
[8]
Lavigne, O., Gamboa, E., Luzin, V., Law, M., Giuliani, M. and Costin, W. (2014) The Effect of the Crystallographic Texture on Intergranular Stress Corrosion Crack Paths. Materials Science and Engineering: A, 618, 305-309.
https://doi.org/10.1016/j.msea.2014.09.038
[9]
Culbertson, D. and Jiang, Y. (2016) An Experimental Study of the Orientation Effect on Fatigue Crack Propagation in Rolled AZ31B Magnesium Alloy. Materials Science and Engineering: A, 676, 10-19. https://doi.org/10.1016/j.msea.2016.08.088
[10]
Lavigne, O, Gamboa, E., Luzin, V., Law, M., Giuliani, M. and Costin, W. (2014) The Effect of the Crystallographic Texture on Intergranular Stress Corrosion Crack Paths. Materials Science & Engineering: A, 618, 305-309.
https://doi.org/10.1016/j.msea.2014.09.038
[11]
Sabnis, P.A., Forest, S. and Cormier, J. (2016) Microdamage Modelling of Crack Initiation and Propagation in FCC Single Crystals under Complex Loading Conditions. Computer Methods in Applied Mechanics and Engineering, 312, 468-491.
https://doi.org/10.1016/j.cma.2016.04.018
[12]
Li, F., Liu, Z., Wu, W., Xia, P., Ying, P., Zhou, Y., et al. (2017) Enhanced Fatigue Crack Propagation Resistance of Al-Cu-Mg Alloy by Intensifying Goss Texture and Refining Goss Grains. Materials Science and Engineering: A, 679, 204-214.
https://doi.org/10.1016/j.msea.2016.10.003
[13]
Wei, L., Pan, Q., Huang, H., Feng, L. and Wang, Y. (2014) Influence of Grain Structure and Crystallographic Orientation on Fatigue Crack Propagation Behavior of 7050 Alloy Thick Plate. International Journal of Fatigue, 66, 55-64.
https://doi.org/10.1016/j.ijfatigue.2014.03.009
[14]
Yan, L. and Fan, J. (2016) In-Situ SEM Study of Fatigue Crack Initiation and Propagation Behavior in 2524 Aluminum Alloy. Materials & Design, 110, 592-601.
https://doi.org/10.1016/j.matdes.2016.08.004
[15]
Li, F., Liu, Z., Wu, W., Xia, P., Ying, P., Zhao, Q., et al. (2016) On the Role of Texture in Governing Fatigue Crack Propagation Behavior of 2524 Aluminum Alloy. Materials Science and Engineering: A, 669, 367-378.
https://doi.org/10.1016/j.msea.2016.05.091
[16]
Wen, W., Cai, P., Ngan, A.H.W. and Zhai, T. (2016) An Experimental Methodology to Quantify the Resistance of Grain Boundaries to Fatigue Crack Growth in an AA2024 T351 Al-Cu Alloy. Materials Science and Engineering: A, 666, 288-296.
https://doi.org/10.1016/j.msea.2016.04.071
[17]
Sung, P.-H. and Chen, T.-C. (2015) Studies of Crack Growth and Propagation of Single-Crystal Nickel by Molecular Dynamics. Computational Materials Science, 102, 151-158. https://doi.org/10.1016/j.commatsci.2015.02.031