With the ever-increasing range of video and audio applications in portable handheld devices, demand for high throughput in Wi-Fi networks is escalating. In this paper we introduce several novel features defined in next generation WLAN, termed as IEEE 802.11ax standard, and compare between the maximum throughputs received in IEEE 802.11ax and IEEE 802.11ac in a scenario where the AP continuously transmits to one station in the Single User mode. The comparison is done as a function of the modulation/coding schemes in use. In IEEE 802.11ax we consider two levels of frame aggregation. IEEE 802.11ax outperforms IEEE 802.11ac by about 29% and 48% in reliable and unreliable channels respectively.
References
[1]
IEEE Std. 802.11TM-2016, IEEE Standard for Information Technology—Telecommunications and Information Exchange between Systems—Local and Metropolitan Area Networks—Specific Requirements. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE, New York, December 2016.
[2]
IEEE P802.11axTM/D1.2, Draft Standard for Information Technology—Telecommunications and Information Exchange between Systems—Local and Metropolitan Area Networks—Specific Requirements. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE, New York, 2016.
[3]
IEEE Std. 802.11acTM-2013, IEEE Standard for Information Technology—Telecommunications and Information Exchange between Systems—Local and Metropolitan Area Networks—Specific Requirements. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specific Requirements. Amendment 4: Enhancements for Very High Throughput for Operation in Bands below 6 GHz, IEEE, New York, 2013.
[4]
Perahia, E. and Stacey, R. (2013) Next Generation Wireless LANs: 802.11n and 802.11ac. 2nd Edition, Cambridge Press, Cambridge.
[5]
Khorov, E., Kiryanov, A. and Lyakhov, A. (2015) IEEE 802.11ax: How to Build High Efficiency WLANs. 2015 International Conference on Engineering and Telecommunication (EnT), Moscow, 18-19 November 2015, 14-19.
[6]
Afaqui, M.S., Villegas, E.G. and Aguilera, E.L. (2016) IEEE 802.11ax: Challenges and Requirements for Future High Efficiency WiFi. IEEE Wireless Communications, PP, 2-9.
[7]
Deng, D.J., Chen, K.C. and Cheng, R.S. (2014) IEEE 802.11ax: Next Generation Wireless Local Area Networks. 2014 10th International Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness (QShine), Rhodes, 18-20 August 2014, 77-82. https://doi.org/10.1109/qshine.2014.6928663
Khorov, E., Loginov, V. and Lyakhov, A. (2016) Several EDCA Parameter Sets for Improving Channel Access in IEEE 802.11ax Networks. 2016 International Symposium on Wireless Communication Systems (ISWCS), Poznan, 20-23 September 2016, 419-423.
[10]
Lin, W., Li, B., Yang, M., Qn, Q., Yan, Z., Zuo, X. and Yang, B. (2016) Integrated Link-System Level Simulation Platform for the Next Generation WLAN, IEEE 802.11ax. 2016 IEEE Global Communications Conference (GLOBECOM), 1-7.
[11]
Karmakar, R., Chattopadhyay, S. and Chakraborty, S. (2017) Impact of IEEE 802.11n/ac PHY/MAC High Throughput Enhancements over Transport/Application Layer Protocols—A Survey. IEEE Communication Surveys and Tutorials.
[12]
Sharon, O. and Alpert, Y. (2014) MAC Level Throughput Comparison: 802.11ac vs. 802.11n. Physical Communication, 12, 33-49.
[13]
Lemmon, J. (2002) Wireless Link Statistical Bit Error Rate Model. Technical Report 02-934, U.S. Department of Commerce, June 2002.