This paper proposes a new method to reduce the dimensionality of input and output spaces in DEA models. The method is based on Yanai’s Generalized Coefficient of Determination and on the concept of pseudo-rank of a matrix. In addition, the paper suggests a rule to determine the cardinality of the subset of selected variables in a way to gain the maximal discretionary power and to suffer a minimal informational loss.
References
[1]
Charnes, A., Cooper, W.W. and Rhodes, E. (1978) Measuring the Efficiency of Decision Making Units. European Journal of Operational Research, 2, 429-444.
[2]
Cooper, W.W., Seiford, L.M. and Tone, K. (2006) Data Envelopment Analysis: A Comprehensive Text with Models. Applications, References and DEA-Solver Software, Springer, New York.
[3]
Kumbhakar, S.C. and Lovell, C.A.K. (2000) Stochastic Frontier Analysis. Cambridge University Press, Cambridge. https://doi.org/10.1017/cbo9781139174411
[4]
Zimek, A., Schubert, E. and Kriegel, H.-P. (2012) A Survey on Unsupervised Outlier Detection in High-Dimensional Numerical Data. Statistical Analysis and Data Mining, 5, 363-387. https://doi.org/10.1002/sam.11161
[5]
Adler, N. and Golany, B. (2002) Including Principal Component Weights to Improve Discrimination in Data Envelopment Analysis. Journal of the Operational Research Society, 53, 985-991. https://doi.org/10.1057/palgrave.jors.2601400
[6]
Angulo-Meza, L. and Lins, M.P.E. (2002) Review of Methods for Increasing Discrimination in Data Envelopment Analysis. Annals of Operations Research, 116, 225-242. https://doi.org/10.1023/A:1021340616758
[7]
Podinovski, V.V. and Thanassoulis, E. (2007) Improving Discrimination in Data Envelopment Analysis: Some Practical Suggestions. Journal of Productivity Analysis, 28, 117-126. https://doi.org/10.1007/s11123-007-0042-x
[8]
Senra, L.F.A.C., Naci, L.C., Soares de Melo, J.C.B. and Angulo-Meza, L. (2007) Estudo Sobre Métodos de Selecao de Variáveis em DEA. Pesquisa Operaconal, 27, 191-207. https://doi.org/10.1590/s0101-74382007000200001
[9]
Andersen, P. and Petersen, N.C. (1993) A Procedure for Ranking Efficient Units in Data Envelopment Analysis. Management Science, 39, 1261-1264.
https://doi.org/10.1287/mnsc.39.10.1261
[10]
Sexton, T.R., Silkman, R.H. and Hogan, A.J. (1986) Data Envelopment Analysis: Critique and Extensions. In: Silkman, R.H., Ed., Measuring Efficiency: An Assessment of Data Envelopment Analysis, Jossey-Bass, San Francisco, CA, 73-105. https://doi.org/10.1002/ev.1441
[11]
Doyle, J.R. and Green, R. (1994) Efficiency and Cross-Efficiency in Data Envelopment Analysis: Derivatives, Meanings and Uses. Journal of the Operational Research Society, 45, 567-578. https://doi.org/10.1057/jors.1994.84
[12]
Green, R.H., Doyle, J.R. and Cook, W.D. (1996) Preference Voting and Project Ranking Using Data Envelopment Analysis and Cross-Evaluation. European Journal of Operational Research, 90, 461-472.
[13]
Athanassopoulos, A.D. (2012) Discriminating among Relatively Efficient Units in Data Envelopment Analysis: A Comparison of Alternative Methods and Some Extensions. American Journal of Operations Research, 2, 1-9.
https://doi.org/10.4236/ajor.2012.21001
[14]
Ueda, T. and Hoshiai, Y. (1997) Application of Principal Component Analysis for Parsimonious Summarization of DEA Inputs and/or Outputs. Journal of Operational Research Society of Japan, 40, 466-478.
[15]
Adler, N. and Golany, B. (2001) Evaluation of Deregulated Airline Networks Using Data Envelopment Analysis Combined with Principal Component Analysis with an Application to Western Europe. European Journal of Operational Research, 132, 260-273.
[16]
Ali, A.I. and Seiford, L.M. (1990) Translation Invariance in Data Envelopment Analysis. Operations Research Letters, 9, 403-405.
[17]
Pastor, J. (1996) Translation Invariance in Data Envelopment Analysis: A Generalization. Annals of Operations Research, 66, 91-102.
https://doi.org/10.1007/BF02187295
[18]
Banker, R.D., Charnes, A. and Cooper, W.W. (1984) Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis. Management Science, 30, 1078-1092. https://doi.org/10.1287/mnsc.30.9.1078
[19]
Jenkins, L. and Anderson, M. (2003) A Multivariate Statistical Approach to Reducing the Number of Variables in Data Envelopment Analysis. European Journal of Operational Research, 147, 51-61.
[20]
Cadima, J.F.L. (2001) Reducao de Dimensionalidade Através duma Análise em Componentes Principais: um critério para o número de Componentes Principais a reter. Revista de Estatística (INE), 1o. quadrimestre, 37-49.
[21]
Cadima, J.F.L. and Jollife, I.T. (2001) Variable Selection and the Interpretation of Principal Subspaces. Journal of Agricultural, Biological and Environmental Statistics, 6, 62-79. https://doi.org/10.1198/108571101300325256
[22]
Yanai, H. (1974) Unification of Various Techniques of Multivariate Analysis by Means of Generalized Coefficient of Determination (G.C.D.). Journal of Behaviormetrics, 1, 45-54. https://doi.org/10.2333/jbhmk.1.46
[23]
Dyson, R.G., Allen, R., Camanho, A.S., Podinovski, V.V., Sarrico, C.S. and Shale, E.A. (2001) Pitfalls and Protocols in DEA. European Journal of Operational Research, 132, 245-259.
[24]
Karamizadeh, S., Abdullah, S.M., Manaf, A.A., Zamani, M. and Hooman, A. (2013) An Overview of Principal Component Analysis. Journal of Signal and Information Processing, 4, 173-175. https://doi.org/10.4236/jsip.2013.43B031
[25]
Richman, M.B, Mercer, A.E., Leslie, L.M., Doswell III, C.A. and Shafer, C.M. (2013) High Dimensional Dataset Compression Using Principal Components. Open Journal of Statistics, 3, 356-366. https://doi.org/10.4236/ojs.2013.35041
[26]
Jollife, I.T. (1986) Principal Component Analysis. Springer-Verlag, New York.
https://doi.org/10.1007/978-1-4757-1904-8
[27]
Gibbons, J.D. and Chakraborti, S. (2003) Nonparametric Statistical Inference. 4th Edition, CRC Press, London.
[28]
Benegas, M. and Silva, F.G. (2010) Estimacao da Eficiência Técnica do SUS nos Estados Brasileiros na Presenca de Variáveis Contextuais. Texto para Discussao, CAEN-UFC.
[29]
Silverman, B.W. (1986) Density Estimation for Statistics and Data Analysis. Chapman and Hall, London.