In this paper, laminar forced convection of CuO nanofluid is numerically investigated in sudden expansion microchannel with isotherm walls and different expansion ratios (ER). An Eulerian two-fluid model is considered to simulate the nanofluid flow inside the microchannel and the governing mass, momentum and energy equations for both phases are solved using the finite volume method. Eulerian-Eulerian two-phase model is very efficient because of considering the relative velocity and temperature of the phases and the nanoparticle concentration distribution. In solving the flow equations for both phases, the SIMPLE algorithm is modified for the coupling of the velocity and pressure and the continuity equations for both phases are combined in order to create the pressure correction equations. However, the Eulerian-Eulerian modeling results show higher heat transfer enhancement in comparison to pure water, so that for a 2% copper-water nanofluid, it has been observed a 35% increase of the heat transfer. The heat transfer enhancement increases with increase in Reynolds number and nanoparticle volume concentration, while the pressure drop increases only slightly. An investigation of the expansion ratio of microchannel shows that the average Nusselt number increases with decrease in expansion ratio as well as with increase in Reynolds number. Also, the Bifurcation has been occurred in higher Reynolds number that is different for each expansion ratio of the microchannel.
References
[1]
Choi, S.U.S. (1995) Enhancing Thermal Conductivity of Fluids with Nanoparticles. In: Siginer, D.A. and Wang, H.P., Eds., Developments and Applications of Non-Newtonian Flows, ASME, Vol. 66, 99-105.
[2]
Xuan, Y., Li, Q. and Hu, W. (2003) Aggregation Structure and Thermal Conductivity of Nanofluids. AIChE Journal, 49, 1038-1043.
[3]
Koo, J. and Kleinstreuer, C. (2004) A New Thermal Conductivity Model for Nanofluids. Journal of Nanoparticle Research, 6, 577-588.
https://doi.org/10.1007/s11051-004-3170-5
[4]
Feng, Y., Yu, B., Xu, P. and Zou, M. (2007) The Effective Thermal Conductivity of Nanofluids Based on the Nanolayer and the Aggregation of Nanoparticles. Journal of Physics D: Applied Physics, 40, 3164-3171.
https://doi.org/10.1088/0022-3727/40/10/020
[5]
Wen, D. and Ding, Y. (2004) Experimental Investigation into Convective Heat Transfer of Nanofluids at the Entrance Region under Laminar Flow Conditions. International Journal of Heat and Mass Transfer, 47, 5181-5188.
[6]
Heris, S.Z., Etemad, S.Gh. and Esfahany, M.N. (2006) Experimental Investigation of Oxide Nanofluids Laminar Flow Convective Heat Transfer. International Communications in Heat and Mass Transfer, 33, 529-535.
[7]
Jung, J.Y., Oh, H.S. and Kwak, H.Y. (2009) Forced Convective Heat Transfer of Nanofluids in Microchannels. International Journal of Heat and Mass Transfer, 52, 466-472.
[8]
Wu, X., Wu, H. and Cheng, P. (2009) Pressure Drop and Heat Transfer of Al2O3-H2O Nanofluids through Silicon Microchannels. Journal of Micromechanics and Microengineering, 19, 105-112.
[9]
Li, J. and Kleinstreuer, C. (2008) Thermal Performance of Nanofluid Flow in Microchannels. International Journal of Heat and Fluid Flow, 29, 1221-1232.
[10]
Santra, A.K., Sen, S. and Chakraborty, N. (2009) Study of Heat Transfer Due to Laminar Flow of Copper-Water Nanofluid through Two Isothermally Heated Parallel Plates. International Journal of Thermal Sciences, 48, 391-400.
[11]
Behzadmehr, A., Saffar-Avval, M. and Galanis, N. (2007) Prediction of Turbulent Forced Convection of a Nanofluid in a Tube with Uniform Heat Flux Using a Two Phase Approach. International Journal of Heat and Fluid Flow, 28, 211-219.
[12]
Mirmasoumi, S. and Behzadmehr, A. (2008) Numerical Study of Laminar Mixed Convection of a Nanofluid in a Horizontal Tube Using Two-Phase Mixture Model. Applied Thermal Engineering, 28, 717-727.
[13]
Mirmasoumi, S. and Behzadmehr, A. (2008) Effect of Nanoparticles Mean Diameter on Mixed Convection Heat Transfer of a Nanofluid in a Horizontal Tube. International Journal of Heat and Fluid Flow, 29, 557-566.
[14]
Akbarinia, A. and Laur, R. (2009) Investigating the Diameter of Solid Particles Effects on a Laminar Nanofluid Flow in a Curved Tube Using a Two Phase Approach. International Journal of Heat and Fluid Flow, 30, 706-714.
[15]
Kurowski, L., Chmiel-Kurowska, K. and Thullie, J. (2009) Numerical Simulation of Heat Transfer in Nanofluids. Computer Aided Chemical Engineering, 26, 967-972.
[16]
Fard, M.H., Esfahany, M.N. and Talaie, M.R. (2010) Numerical Study of Convective Heat Transfer of Nanofluids in a Circular Tube Two-Phase Model versus Single-Phase Model. International Communications in Heat and Mass Transfer, 37, 91-97.
[17]
Kalteh, M., Saffar-Avval, M., Abbassi, A., Frijns, A., Darhuber, A. and Harting, J. (2012) Experimental and Numerical Investigation of Nanofluid Forced Convection inside a Wide Microchannel Heat Sink. Applied Thermal Engineering, 36, 260-268.
[18]
Moraveji, M.K. and Ardehali, R.M. (2013) CFD Modeling (Comparing Single and Two-Phase Approaches) on Thermal Performance of Al2O3/Water Nanofluid in Mini-Channel Heat Sink. International Communications in Heat and Mass Transfer, 44, 157-164.
[19]
Shariat, M., Mokhtari, R., Akbarinia, A., Rafee, R. and Sajjadi, S.M. (2014) Impact of Nanoparticle Mean Diameter and the Buoyancy Force on Laminar Mixed Convection Nanofluid Flow in an Elliptic Duct Employing Two Phase Mixture Model. International Communications in Heat and Mass Transfer, 50, 15-24.
[20]
Hao, Y.L. and Tao, Y.X. (2004) A Numerical Model for Phase-Change Suspension Flow in Microchannels. Numer. Numerical Heat Transfer, Part A: Applications, 46, 55-77.
[21]
(2006) Fluent 6.3 User’s Guide. Fluent Inc.
[22]
Saffar-Avval, M., Kalteh, M., Abbassi, A. and Harting, J. (2011) Eulerian-Eulerian Two-Phase Numerical Simulation of Nanofluid Laminar Forced Convection in a Microchannel. International Journal of Heat and Fluid Flow, 32, 107-116.
[23]
Patankar, S.V. (1980) Numerical Heat Transfer and Fluid Flow. Hemisphere, Washington DC.
[24]
Versteeg, H.K. and Malalasekera, W. (1995) An Introduction to Computational Fluid Dynamics the Finite Volume Method. Longman Scientific and Technical, England.
[25]
Scott, P.S. and Mirza, F.A. (1986) A Finite Element Analysis of Laminar Flows through Planar and Axisymmetric Abrupt Expansions. Computers & Fluids, 14, 423-432.