The aim of this paper is to present, by axiomatic way, an idea about the general conditional information of a single, fixed fuzzy set when the conditioning fuzzy event is variable. The properties of this conditional information are translated in a system of functional equations. Some classes of solutions of this functional system have been found.
References
[1]
Shannon, C. and Weaver, W. (1949) The Mathematical Theory of Communication. University of Illinois Press, Urbana.
[2]
Khincin, A.Y. (1957) Mathematical Foundation of Information Theory. Dover Publication, New York.
[3]
Rényi, A. (1961) On Measures of Entropy and Information. Proceedings IV Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, 20-30 June 1961, Vol. 1, 547-561.
[4]
Aczél, J. (1969) Probability and Information Theory. Lectures Notes in Mathematics, Vol. 89, Springer-Verlag, Berlin, 1-11.
[5]
Kampé de Fériet, J. and Forte, B. (1967) Information et Probabilité. Comptes Rendus de l’Académie des Sciences Paris, 265, 110-114, 142-146, 350-353.
[6]
Forte, B. (1969) Measure of Information. The General Axiomatic Theory. R.I.R.O., Informatique Théorique et Applications, R3, 63-90.
[7]
Kampé de Fériet, J. and Benvenuti, P. (1969) Sur une classe d’informations. Comptes Rendus de l’Académie des Sciences Paris, 269, 97-101.
[8]
Kampé de Fériet, J. (1970) Mesures de l’information fornie par un evénement. Colloque International Du Centre National de la Recherche Scientifique, 186, 191-221.
[9]
Benvenuti, P., Vivona, D. and Divari, M. (1990) A General Information for Fuzzy Sets. In: Bouchon-Meunier, B., Yager, R.R. and Zadeh, L.A., Eds., Uncertainty in Knowledge Bases, IPMU 1990, Lecture Notes in Computer Science, Vol. 521, Springer, Berlin, Heidelberg, 307-316. https://doi.org/10.1007/BFb0028117
[10]
Vivona, D. (1982) L’informazione integrale. Quaderno. 19 Istituto di Matematica Applicata delle Facoltá di Ingeneria, Universitá di Roma, 245, 3-15.
[11]
Benvenuti. P., Vivona, D. and Divari, M. (1988) Sull’Integrale nella Teoria dell’Informazione. Rendiconti di Matematica di Roma, 8, 31-43.
[12]
Vivona, D. and Divari, M. (1989) Sull’entropia integrale nella teoria dell’informazione. Rendiconti di Matematica di Roma, 9, 145-159.
[13]
Vivona, D. (2004) Information Theory and Fuzzy Integrals: Along the Way Paved by Pietro Benvenuti. Proceedings of IPMU04, Perugia, 4-9 July 2004, 1957-1963.
[14]
Vivona, D. and Divari, M. (2005) On a Conditional Information for Fuzzy Sets. Proceedings of AGOP05, Lugano, 10-15 July 2005, 147-149.
[15]
Bouchon, B., Coletti, G. and Masala, C. (2006) A General Theory of Conditional Decomposable Information Measures. Proceedings IPMU06, Paris, 2-7 July 2006, Vol. 1, 97-104.
[16]
Vivona, D. and Divari, M. (2008) Aggregation Operators for Conditional Information without Probability. Proceedings IPMU08, Malaga, 22-27 June 2008, 258-260.
[17]
Aczél, J. (1966) Lectures on Functional Equations and Their Applications. Academic Press, New York.
[18]
Zadeh, L.A. (1965) Fuzzy Sets. Information and Control, 8, 338-353.
[19]
Klir, G.J. and Folger, T.A. (1988) Fuzzy Sets, Uncertainty, and Information. Prentice Hall, Upper Saddle River.
[20]
Boskov, B. (1993) Fuzzy Thinking: The New Science of Fuzzy Logic.
[21]
Halmos, P.R. (1969) Measure Theory. Van Nostrand Reinhold Company, New York.
[22]
Yosida, K. (1995) Functional Analysis. Springer, Berlin. https://doi.org/10.1007/978-3-642-61859-8