To increase the biocompatibility of hydroxyapatite (HA), Ca10(PO4)6(OH)2,
the Sr substitution of Ca into the HA structure was effected to yield Ca10-xSrx(PO4)6(OH)2(Sr-HA).
For medical and dental applications, it is important
that Sr-HA is prepared as a thin film so that the Sr fully substitutes the Ca
sites in the HA structure and does not form segregated impurities consisting of
Sr compounds. If the segregated Sr forms different amounts of different
impurities, the dissolution of the Sr into the living body will not be
reproducible across different samples. To confirm the Sr substitution into the
Ca site in the HA structure, the systematic variation in the lattice constants
of the Sr-HA with Sr content was evaluated as the first step. The a- and c-axis lengths were found to exhibit a linear relationship with the Sr content for six samples with different Sr contents,
indicating that the prepared Sr-HA thin films likely possessed partial Sr
substitution into the Ca sites of the HA structure. This result is an important
first step in the accurate evaluation of the biological effects of Sr-HA thin
films.
References
[1]
Geesink, R.G.T., de Groot, K. and Klein, C.P.A.T. (1987) Chemical Implant Fixation Using Hydroxyl-Apatite Coatings. The Development of a Human Total Hip Prosthesis for Chemical Fixation to Bone Using Hydroxyl-Apatite Coatings on Titanium Substrates. Clinical Orthopaedics and Related Research, 225, 147-170.
[2]
Klein, C.P.A.T., Patka, P., van der Lubbe, H.B.M., Wolke, J.G.C. and de Groot, K. (1991) Plasma-Sprayed Coatings of Tetracalciumphosphate, Hydroxyl-Apatite, and α-TCP on Titanium Alloy: An Interface Study. Journal of Biomedical Materials Research, 25, 53-65. https://doi.org/10.1002/jbm.820250105
[3]
McPherson, R., Gane, N. and Bastow, T.J. (1995) Structural Characterization of Plasma-Sprayed Hydroxylapatite Coatings. Journal of Materials Science: Materials in Medicine, 6, 327-334. https://doi.org/10.1007/bf00120300
[4]
Yan, W.Q., Nakamura, T., Kawanabe, K., Nishigochi, S., Oka, M. and Kokubo, T. (1997) Apatite Layer-Coated Titanium for Use as Bone Bonding Implants. Biomaterials, 18, 1185-1190. https://doi.org/10.1016/S0142-9612(97)00057-4
[5]
Stoch, A., Brozek, A., Kmita, G., Stoch, J., Jastrzebski, W. and Rakowska, A. (2001) Electrophoretic Coating of Hydroxyapatite on Titanium Implants. Journal of Molecular Structure, 596, 191-200. https://doi.org/10.1016/S0022-2860(01)00716-5
[6]
Bigi, A., Falini, G., Foresti, E., Gazzano, M., Ripamonti, A. and Roveri, N. (1993) Magnesium Influence on Hydroxyapatite Crystallization. Journal of Inorganic Biochemistry, 49, 69-78. https://doi.org/10.1016/0162-0134(93)80049-f
[7]
Kim, T.N., Feng, Q.L., Kim, J.O., Wu, J., Wang, H., Chen, G.C. and Cui, F.Z. (1998) Antimicrobial Effects of Metal Ions (Ag+, Cu2+, Zn2+) in Hydroxyapatite. Journal of Materials Science: Materials in Medicine, 9, 129-134. https://doi.org/10.1023/A:1008811501734
[8]
O’Donnell, M.D., Fredholm, Y., de Rouffignac, A. and Hill, R.G. (2008) Structural Analysis of a Series of Strontium-Substituted Apatites. Acta Biomaterialia, 4, 1455-1464. https://doi.org/10.1016/j.actbio.2008.04.018
[9]
Ergun, C., Webster, T.J., Bizios, R. and Doremus, R.H. (2002) Hydroxyapatite with Substituted Magnesium, Zinc, Cadmium, and Yttrium. I. Structure and Microstru- cture. Journal of Biomedical Materials Research, 59, 305-311. https://doi.org/10.1002/jbm.1246
[10]
Caverzasio, J. (2008) Strontium Ranelate Promotes Osteoblastic Cell Replication through at Least Two Different Mechanisms. Bone, 42, 1131-1136. https://doi.org/10.1016/j.bone.2008.02.010
[11]
Hurtel-Lemaire, A.S., Mentaverri, R., Caudrillier, A., Cournarie, F., Wattel, A., Kamel, S., Terwilliger, E.F., Brown, E.M. and Brazier, M. (2009) The Calcium-Sensing Receptor Is Involved in Strontium Ranelate-Induced Osteoclast Apoptosis. The Journal of Biological Chemistry, 284, 575-584. https://doi.org/10.1074/jbc.M801668200
[12]
Reginster, J.Y. (2009) Strontium Ranelate in Osteoporosis. Current Pharmaceutical Design, 8, 1907-1916. https://doi.org/10.2174/1381612023393639
[13]
Bigi, A., Boanini, E., Capuccini, C. and Gazzano, M. (2007) Strontium-Substituted Hydroxyapatite Nanocrystals. Inorganica Chimica Acta, 360, 1009-1016. https://doi.org/10.1016/j.ica.2006.07.074
[14]
Capuccini, C., Torricelli, P., Sima, F., Boanini, E., Ristoscu, C., Bracci, B., Socol, G., Fini, M., Mihailescu, I.N. and Bigi, A. (2008) Strontium-Substituted Hydroxyapatite Coatings Synthesized by Pulsed-Laser Deposition: In Vitro Osteoblast and Osteoclast Response. Acta Biomaterialia, 4, 1885-1893. https://doi.org/10.1016/j.actbio.2008.05.005
[15]
Ozeki, K., Goto, T., Aoki, H. and Masuzawa, T. (2014) Characterization of Sr-Substituted Hydroxyapatite Thin Film by Sputtering Technique from Mixture Targets of Hydroxyapatite and Strontium Apatite. Bio-Medical Materials and Engineering, 24, 1447-1456.
[16]
Pereiro, I., Rodríguez-Valencia, C., Serra, C., Solla, E.L., Serra, J. and González, P. (2012) Pulsed Laser Deposition of Strontium-Substituted Hydroxyapatite Coatings. Applied Surface Science, 258, 9192-9197. https://doi.org/10.1016/j.apsusc.2012.04.063
[17]
Morohashi, T., Sano, T. and Yamada, S. (1994) Effects of Strontium on Calcium Metabolism in Rats: I. A Distinction between Pharmacologic and Toxic Doses. The Japanese Journal of Pharmacology, 64, 155-162. https://doi.org/10.1254/jjp.64.155
[18]
Nishikawa, H. and Yoshikawa, R. (2015) Controlling the Chemical Composition of Hydroxyapatite Thin Films Using Pulsed Laser Deposition. Transactions of the Materials Research Society of Japan, 40, 111-114. https://doi.org/10.14723/tmrsj.40.111
[19]
Nishikawa, H., Hasegawa, T., Miyake, A., Tashiro, Y., Hashimoto, Y., Blank, D.H.A. and Rijnders, G. (2016) Relationship Between the Ca/P Ratio of Hydroxyapatite Thin Films and the Spatial Energy Distribution of the Ablation Laser in Pulsed Laser Deposition. Materials Letters, 165, 95-98. https://doi.org/10.1016/j.matlet.2015.11.115