全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Physical Properties in Aqueous Solutions for a Series of Alkyltrimethylammonium Salicylates (C12TA-Sal through C16TA-Sal): From a View Point of Drag Reduction

DOI: 10.4236/snl.2016.64005, PP. 45-55

Keywords: Drag Reduction, Vortex Inhibition, Viscoelastic Recoil, CMC

Full-Text   Cite this paper   Add to My Lib

Abstract:

Compounds for a series of alkyltrimethylammonium salicylates (C12TA-Sal through C16TA-Sal) were synthesized. Their physical properties in aqueous solutions were investigated by conductometry, viscometry, vortex inhibition, viscoelastic recoil and swirling decay time from a view point of drag reduction. For critical micelle concentrations (CMC) obtained for a series of compounds by conductometry, it was found that a linear relation of the form, log(CMC)= 4.0880.305*Nc (Nc: carbon number in the alkyl chain), holds. From the viscosity measurement, all the compounds showed viscosity increase above their CMC. Vortex inhibition was observed above the CMC for the compounds with the chain length longer than C13. Viscoelastic recoil was observed above the concentration of one and a half times the CMC for the compounds with alkyl chain length longer than C14.

References

[1]  Virk, P.S. (1975) Drag Reduction Fundamentals. AIChE Journal, 21, 625-656.
https://doi.org/10.1002/aic.690210402
[2]  Bewersdorf, H.-W. and Ohlendorf, D. (1988) The Behaviour of Drag-Reducing Cationic Surfactant Solutions. Colloid and Polymer Science, 266, 941-953.
https://doi.org/10.1007/BF01410851
[3]  Gyr, A. and Bewerddorff, H.-W. (1995) Drag Reduction of Turbulent Flows by Additives. Kluwer Academic Publishers, Dordrecht/Boston/London.
http://link.springer.com/book/10.1007%2F978-94-017-1295-8
[4]  Hellsten, M. (2002) Drag-Reducing Surfactants. Journal of Surfactants and Detergents, 5, 65-70.
[5]  Saeki, T., Tokuhara, K. and Matsumuta, T. (2008) Development and Spread of Energy Saving Technology by Using Drag-reducing Additives. The Eighth Green and Sustainable Chemistry Award Awarded by the Minister of the Environment in Japan.
http://www.jaci.or.jp/english/gscn/awards/aw20090902_01.html
[6]  Kishimoto, A., Nishimura, K. and Kashiwagi, A. (2007) Drag Reduction Additive for Centralized Air-Conditioning of Buildings. The SCEJ Technical Achievement Award in 2007 Awarded by Society of Chemical Engineering, Japan.
http://www.scej.org/en/awards/scej-award/scej-award-for-otd.html
[7]  Gordon, R.J. and Balakrishnan, A. (1972) Vortex Inhibition: A New Viscoelastic Effect with Importance in Drag Reduction and Polymer Characterization. Journal of Applied Polymer Science, 16, 1629-1639.
http://onlinelibrary.wiley.com/doi/10.1002/app.1972.070160704/abstract
[8]  Harwigsson, I. and Hellsten, M. (1996) Environmentally Acceptable Drag-Reducing Surfactants for District Heating and Cooling. Journal of the American Oil Chemists’ Society, 73, 921-928.
https://doi.org/10.1007/BF02517996
[9]  Zakin, J.L., Kawaguchi, Y., Talmon, Y. and Hart, D.J. (2006) Development of Practical Drag Reduction System for District Cooling Systems. NEDO Report, Registration Number: 2002EF001.
http://www.nedo.go.jp/content/100084667.pdf#search='NEDO+Report%2C+Registration+Number%3A+2002EF001
[10]  Gravsholt, S. (1976) Viscoelasticity in Highly Dilute Aqueous Solutions of Pure Cationic Detergents. Journal of Colloid and Interface Science, 57, 575-577.
https://doi.org/10.1016/0021-9797(76)90236-8
[11]  Hyde, A.J. and Stevenson, D.M. (1969) The Effect of Organic Additives on Paraffin Chain Electrolyte Solutions. Part IV. Electrical Conductance Measurements on Solubilised Solutions of Hydrocarbons. Kolloid-Zeitschrift und Zeitschrift für Polymere, 232, 797-804.
https://doi.org/10.1007/BF01500658
[12]  Rao, U.R.K., Manohar, C., Valailokar, B.S. and Iyer, R.M. (1987) Micellar Chain Model for the Origin of the Visoelasticity in Dilute Surfactant Solutions. The Journal of Physical Chemistry, 91, 3286-3291.
https://doi.org/10.1021/j100296a036
[13]  Kato, M., Takahashi, T. and Shirakashi, M. (2006) Influence of Planar Elongation Strain on Flow-Induced Structure and Flow Instability of CTAB/Nasal Aqueous Solution. Nippon Kikai Gakkai Ronbunshu, B-hen, 72, 1935-1942.
https://www.jstage.jst.go.jp/article/kikaib1979/72/720/72_720_1935/_pdf
[14]  Bogue, D.C. and Doughty, J.O. (1966) Comparison of Constitutive Equations for Viscoelastic Fluids. Industrial & Engineering Chemistry Fundamentals, 5, 243-252.
[15]  Kapoor, N.N., Kalb, J.W., Brumm, E.A. and Fredrickson, A.G. (1965) Stress-Relaxing Solids. Industrial & Engineering Chemistry Fundamentals, 4, 186-194.
[16]  Itoh, M., Tamano, S., Yokota, K. and Ninagawa, M. (2005) Velocity Measurement in Turbulent Boundary Layer of Drag-Reducing Surfactant Solution. Physics of Fluids, 17, Article ID: 075107.
https://doi.org/10.1063/1.1979523
[17]  Johansson, L., Lindblom, G., Gravsholt, S. and Norden, B. (1979) Viscoelastic Amphiphile Aqueous Solutions Studied by Linear Dichroism Spectroscopy. Journal of Colloid and Interface Science, 69, 358-361.
https://doi.org/10.1016/0021-9797(79)90170-X
[18]  Gravsholt, S. (1979) Rheopectic Behavior of Highly Dilute Viscoelastic Aqueous Detergent Solutions. Naturwissenschaften, 66, 263-264.
https://doi.org/10.1007/BF00571610
[19]  Angel, M., Hoffmann, H., Lobl, M., Reizlein, K., Thurn, H. and Wunderlich, I. (1984) From rodlike micelles to lyotropic liquid crystals. Progress in Colloid and Polymer Science, 69, 12-28.
[20]  Imae, T., Hashimoto, K. and Ikeda, S. (1990) The Spinnability of Viscoelastic Solutions of Tetradecyl- and Hexadecyl-Trimethylammonium Salicylates. Colloid and Polymer Science, 268, 460-468.
https://doi.org/10.1007/BF01411005
[21]  Imae, T. (1990) Light Scattering of Spinnable, Viscoelastic Solutions of Hexadecyltrimethylammonium Salicylate. Journal of Physical Chemistry, 94, 5953-5959.
https://doi.org/10.1021/j100378a063
[22]  Imae, T. and Kohsaka, T. (1992) Size and Electrophoretic Mobility of Tetradecyltrimethylammonium Salicylate (C14TASal) Micelles in Aqueous Media. Journal of Physical Chemistry, 96, 10030-10035.
https://doi.org/10.1021/j100203a081
[23]  Hashimoto, K., Imae, T. and Nakazawa, K. (1992) The Viscoelasticity of Spinnable Solutions of Alkyltrimethylammonium Salicylates. Colloid and Polymer Science, 270, 249-258.
https://doi.org/10.1007/BF00655477
[24]  Imae, T., Kato, M. and Rutland, M. (2000) Forces between Two Glass Surfaces with Adsorbed Hexadecyltrimethylammonium Salicylate. Langmuir, 16, 1937-1942.
https://doi.org/10.1021/la990824y
[25]  Alfaro, J., Landázuri, G., González-álvarez, A., Macías, E.R., Fernandez, V., Shulz, P., Rodríguez, J. and Soltero, J. (2010) Phase and Rheological Behavior of the Hexadecyl(Trimethyl)Azanium, 2-Hydroxybenzoate/Water System. Journal of Colloid and Interface Science, 351, 171-179.
https://doi.org/10.1016/j.jcis.2010.07.038
[26]  Birdi, K.S. (1986) Determination of C.M.C. and Aggregation Numbers for Some Cationic Surfactants. Acta Chemica Scandinavica, 40A, 319-321.
https://doi.org/10.3891/acta.chem.scand.40a-0319
[27]  Mukerjee, P. and Mysels, K.J. (1971) Critical Micellar Concentration of Aqueous Surfactant Systems. National Bureau of Standard, Washington.
[28]  Basu Ray, G., Charkraborty, I., Ghosh, S., Moulik, S.P. and Palepu, R. (2005) Self-Aggregation of Alkyltrimethylammonium Bromides (C10-, C12-, C14-, and C16TAB) and Their Binary Mixtures in Aqueous Medium: A Critical and Comprehensive Assessment of Interfacial Behavior and Bulk Properties with Reference to Two Types of Micelle Formation. Langmuir, 21, 10958-10967.
https://doi.org/10.1021/la051509g
[29]  Ribeiro, A.C.F., Lobo, V., Valente, A., Azvedo, E., Miguel, M. and Burrows, H. (2004) Transport Properties of Alkyltrimethylammonium Bromide Surfactants in Aqueous Solutions. Colloid and Polymer Science, 283, 277-283.
https://doi.org/10.1007/s00396-004-1136-x
[30]  Carpena, P., Aguiar, J., Bernaola-Galván, P. and Carnero Ruiz, C. (2002) Problems Associated with the Treatment of Conductivity-Concentration Data in Surfactant Solutions: Simulations and Experiments. Langmuir, 18, 6054-6058.
https://doi.org/10.1021/la025770y
[31]  Moulik, S.P., Haque, M.E., Jana, P.K. and Das, A.R. (1996) Micellar Properties of Cationic Surfactants in Pure and Mixed States. Journal of Physical Chemistry, 100, 701-708.
https://doi.org/10.1021/jp9506494
[32]  Garcfa-Mateos, I., Velázques, M.M. and Rodriguez, L. (1990) Critical Micelle Concentration Determination in Binary Mixtures of Ionic Surfactants by Deconvolution of Conductivity/Concentration Curves. Langmuir, 6, 1078-1083.
https://doi.org/10.1021/la00096a009
[33]  Evans, D.F., Allen, M., Ninham, B.W. and Fouda, A. (1984) Critical Micelle Concentrations for Alkyltrimethylammonium Bromides in Water from 25 to 160°C. Journal of Solution Chemistry, 13, 87-101.
https://doi.org/10.1007/BF00646042
[34]  Rodriguez, A., Junquera, E., del Burgo, P. and Aicart, E. (2004) Conductometric and Spectrofluorimetric Characterization of the Mixed Micelles Constituted by Dodecyltrimethylammonium Bromide and A Tricyclic Antidepressant Drug in Aqueous Solution. Journal of Colloid and Interface Science, 269, 476-483.
https://doi.org/10.1016/j.jcis.2003.09.028
[35]  Czapkiewicz, J., Dlugolecka, M. and Bozena, T. (2004) 10-Methylacridinium Ion as a Fluorimetric Probe Measuring the Activity of Halide Anions in Aqueous Solutions of Cationic Surfactants. Journal of Colloid and Interface Science, 276, 227-230.
https://doi.org/10.1016/j.jcis.2004.03.020
[36]  Evans, D.F. and Wightman, P.J. (1984) Micelle Formation above 100°C. Journal of Colloid and Interface Science, 86, 515-524.
https://doi.org/10.1016/0021-9797(82)90096-0
[37]  Charkraborty, T., Ghosh, S. and Moulik, S.P. (2005) Micellization and Related Behavior of Binary and Ternary Surfactant Mixtures in Aqueous Medium: Cetyl Pyridinium Chloride (CPC), Cetyl Trimethyl Ammonium Bromide (CTAB), and Polyoxyethylene (10) Cetyl Ether (Brij-56) Derived System. Journal of Physical Chemistry B, 109, 14813-14823.
https://doi.org/10.1021/jp044580o
[38]  Klevens, H.B. (1953) Structure and Aggregation in Dilute Solution of Surface Active Agents. Journal of the American Oil Chemists’ Society, 30, 74-80.
https://doi.org/10.1007/BF02635002
[39]  Ohlendorf, D., Interhat, W. and Hoffmann, H. (1986) Surfactant Systems for Drag Reduction: Physico-Chemical Properties and Rheological Behaviour. Rheologica Acta, 25, 468-486.
https://doi.org/10.1007/BF01774397

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133