全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Reach Centroid Localization Algorithm

DOI: 10.4236/wsn.2017.92005, PP. 87-101

Keywords: Anchors, Centroid Localization Algorithm (CLA), Wireless Sensor Networks, Received Signal Strength (RSS), Range-Free, Reach Centroid Localization Algorithm (ReachCLA)

Full-Text   Cite this paper   Add to My Lib

Abstract:

As much as accurate or precise position estimation is always desirable, coarse accuracy due to sensor node localization is often sufficient. For such level of accuracy, Range-free localization techniques are being explored as low cost alternatives to range based localization techniques. To manage cost, few location aware nodes, called anchors are deployed in the wireless sensor environment. It is from these anchors that all other free nodes are expected to estimate their own positions. This paper therefore, takes a look at some of the foremost Range-free localization algorithms, detailing their limitations, with a view to proposing a modified form of Centroid Localization Algorithm called Reach Centroid Localization Algorithm. The algorithm employs a form of anchor nodes position validation mechanism by looking at the consistency in the quality of Received Signal Strength. Each anchor within the vicinity of a free node seeks to validate the actual position or proximity of other anchors within its vicinity using received signal strength. This process mitigates multipath effects of radio waves, particularly in an enclosed environment, and consequently limits localization estimation errors and uncertainties. Centroid Localization Algorithm is then used to estimate the location of a node using the anchors selected through the validation mechanism. Our approach to localization becomes more significant, particularly in indoor environments, where radio signal signatures are inconsistent or outrightly unreliable. Simulated results show a significant improvement in localization accuracy when compared with the original Centroid Localization Algorithm, Approximate Point in Triangulation and DV-Hop.

References

[1]  Sharma, R. and Malhotra, S. (2015) Approximate Point in Triangulation (Apit) Based Localization Algorithm in Wireless Sensor Network. International Journal for Innovative Research in Science and Technology, 2, 39-42.
[2]  He, T., Huang, C., Blum, B.M., Stankovic, J.A. and Abdelzaher, T. (2003) Range-Free Localization Schemes for Large Scale Sensor Networks. Proceedings of the 9th Annual International Conference on Mobile Computing and Networking, San Diego, 14-19 September 2003, 81-95.
https://doi.org/10.1145/938985.938995
[3]  Dargie, W. and Poellabauer, C. (2010) Fundamentals of Wireless Sensor Networks: Theory and Practice. John Wiley & Sons, Hoboken.
https://doi.org/10.1002/9780470666388
[4]  Kumar, A., Kumar, V. and Kapoor, V. (2011) Range Free Localization Schemes for Wireless Sensor Networks. 10th WSEAS International Conference on Software Engineering, Cambridge, 22-24 February 2011, 101-106.
[5]  Karl, H. and Willig, A. (2007) Protocols and Architectures for Wireless Sensor Networks. John Wiley & Sons, Hoboken.
[6]  Kim, S.-Y. and Kwon, O.-H. (2005) Location Estimation Based on Edge Weights in Wireless Sensor Networks. The Journal of Korean Institute of Communications and Information Sciences, 30, 938-948.
[7]  Chong, C. and Kumar, S.P. (2003) Sensor Networks: Evolution, Opportunities, and Challenges. Proceedings of the IEEE, 91, 1247-1256.
https://doi.org/10.1109/JPROC.2003.814918
[8]  Li, X.-Y., Wan, P.-J. and Frieder, O. (2003) Coverage in Wireless Ad Hoc Sensor Networks. IEEE Transactions on Computers, 52, 753-763.
https://doi.org/10.1109/TC.2003.1204831
[9]  Lazos, L. and Poovendran, R. (2004) Serloc: Secure Range-Independent Localization for Wireless Sensor Networks. Proceedings of the 3rd ACM Workshop on Wireless Security, Philadelphia, 01 October 2004, 21-30.
https://doi.org/10.1145/1023646.1023650
[10]  Nagpal, R., Shrobe, H. and Bachrach, J. (2003) Organizing a Global Coordinate System from Local Information on an Ad Hoc Sensor Network. In: Zhao, F. and Guibas, L., Eds., Information Processing in Sensor Networks, Springer, Berlin, 333-348.
https://doi.org/10.1007/3-540-36978-3_22
[11]  Priyantha, N.B., Chakraborty, A. and Balakrishnan, H. (2000) The Cricket Location-Support System. Proceedings of the 6th Annual International Conference on Mobile Computing and Networking, Boston, 06-11 August 2000, 32-43.
[12]  Bulusu, N., Heidemann, J. and Estrin, D. (2000) Gps-Less Low-Cost Outdoor Localization for Very Small Devices. IEEE Personal Communications, 7, 28-34.
https://doi.org/10.1109/98.878533
[13]  Long, S., Wang, F., Duan, W. and Ren, F. (2004) Range-Free Self-Localization Mechanism and Algorithm for Wireless Sensor Networks. Computer Engineering and Applications, 23, 39.
[14]  He, T., Huang, C., Blum, B.M., Stankovic, J.A. and Abdelzaher, T.F. (2005) Range-Free Localization and Its Impact on Large Scale Sensor Networks. ACM Transactions on Embedded Computing Systems, 4, 877-906.
https://doi.org/10.1145/1113830.1113837
[15]  Rappaport, T.S. (1996) Wireless Communications: Principles and Practice. Vol. 2, Prentice Hall, Upper Saddle River.
[16]  Niculescu, D. and Nath, B. (2003) Dv Based Positioning in Ad Hoc Networks. Telecommunication Systems, 22, 267-280.
https://doi.org/10.1023/A:1023403323460
[17]  Keshtgary, M., Fasihy, M. and Ronaghi, Z. (2011) Performance Evaluation of Hop-Based Range-Free Localization Methods in Wireless Sensor Networks. ISRN Communications and Networking, 2011, Article ID: 485486.
https://doi.org/10.5402/2011/485486
[18]  Kleinrock, L. and Silvester, J. (1978) Optimum Transmission Radii for Packet Radio Networks or Why Six Is a Magic Number. Proceedings of the IEEE National Telecommunications Conference, 4, 1-4.
[19]  Wang, J. and Jin, H. (2009) Improvement on Apit Localization Algorithms for Wireless Sensor Networks. International Conference on Networks Security, Wireless Communications and Trusted Computing, 1, 719-723.
https://doi.org/10.1109/nswctc.2009.370
[20]  Zhao, J., Zhao, Q., Li, Z. and Liu, Y. (2013) An Improved Weighted Centroid Localization Algorithm Based on Difference of Estimated Distances for Wireless Sensor Networks. Telecommunication Systems, 53, 25-31.
https://doi.org/10.1007/s11235-013-9673-6
[21]  Dong, Q. and Xu, X. (2014) A Novel Weighted Centroid Localization Algorithm Based on RSSI for an Outdoor Environment. Journal of Communications, 9, 279-285.
https://doi.org/10.12720/jcm.9.3.279-285
[22]  Zhu, Z., He, X., Zhang, X., Zhao, S. and Xia, Y. (2014) The Quadrilateral and Improved Weighted Centroid Localization Algorithm Based on RSSI. Journal of Hangzhou Dianzi University, 1, 004.
[23]  Ding, E.J., Qiao, X., Chang, F. and Qiao, L. (2013) Improvement of Weighted Centroid Localization Algorithm for WSNS Based on RSSI. Transducer and Microsystem Technologies, 32, 53-56.
[24]  Zhang, B., Ji, M. and Shan, L. (2012) A Weighted Centroid Localization Algorithm Based on Dv-Hop for Wireless Sensor Network. 8th International Conference on Wireless Communications, Networking and Mobile Computing, Barcelona, 21-23 September 2012, 1-5.
https://doi.org/10.1109/wicom.2012.6478383
[25]  Shi, H. (2012) A New Weighted Centroid Localization Algorithm Based on RSSI. International Conference on Information and Automation, Shenyang, 6-8 June 2012, 137-141.
https://doi.org/10.1109/icinfa.2012.6246797
[26]  Wang, Z.-M. and Zheng, Y. (2014) The Study of the Weighted Centroid Localization Algorithm Based on RSSI. International Conference on Wireless Communication and Sensor Network, Wuhan, 13-14 December 2014, 276-279.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133