全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effect of Peptidase Inhibitors on Dynorphin A (1-17) or (1-13)-Induced Antinociception and Toxicity at Spinal Level

DOI: 10.4236/pp.2017.82003, PP. 33-51

Keywords: Dynorphin A, Peptidase, Dynorphin-Converting Enzyme, Antinociception, Allodynia

Full-Text   Cite this paper   Add to My Lib

Abstract:

Our group has earlier demonstrated that three enzymes sensitive to peptidase inhibitors (PIs), amastatin (A)-, captopril (C)-, and phosphoramidon (P), played an important role in inactivation of enkephalins at the spinal level. Dynorphin-converting enzyme (DCE) hydrolyzes dynorphin (Dyn) A (1-17) or Dyn A (1-13) mainly at the Arg6-Arg7 bond. Dynorphin A and its derived peptides interact with opioid and glutamate receptors at their N- and C-terminals, respectively. The purpose of the present study was to evaluate the antinociceptive potency and toxicity of intrathecal administered Dyn A (1-17), Dyn A (1-13), or Dyn A (1-6) under pretreatment with ACP and/or the DCE inhibitor p-hydroxymercuribenzoate (PHMB). The effect of these PIs on Dyn A (1-17)-induced inhibition of electrically-evoked contractions in mouse vas deferens was also investigated. The inhibitory potency of Dyn A (1-17) on electrically-evoked contractions in mouse vas deferens under pretreatment with ACP was higher than that with AC, AP, or CP. Pretreatment with ACP augmented Dyn A (1-17) or (1-13)-induced antinociception by approximately 50- or 30-fold with no sign of allodynia when administered intrathecally at low doses. Pretreatment with ACP and PHMB induced neuropathy. These findings showed that intrathecal administration of low-dose Dyn A (1-17) or DynA (1-13) increased antinociception under pretreatment with ACP, but without signs of allodynia in rat.

References

[1]  Chavkin, C., James, I.F. and Goldstein, A. (1982) Dynorphin Is a Specific Endogenous Ligand of the Kappa Opioid Receptor. Science, 215, 413-415.
https://doi.org/10.1126/science.6120570
[2]  Hauser, K.F., Knapp, P.E. and Turbek, C.S. (2001) Structure-Activity Analysis of Dynorphin A Toxicity in Spinal Cord Neurons: Intrinsic Neurotoxicity of Dynorphin A and Its Carboxyl-Terminal, Nonopioid Metabolites. Experimental Neurology, 168, 78-87.
https://doi.org/10.1006/exnr.2000.7580
[3]  Massardier, D. and Hunt, P.F. (1989) A Direct Non-Opiate Interaction of Dynorphin-(1-13) with the N-Methyl-D-Aspartate (NMDA) Receptor. European Journal of Pharmacology, 170, 125-126.
https://doi.org/10.1016/0014-2999(89)90149-0
[4]  Shukla, V.K., Bansinath, M., Dumont, M. and Lemaire, S. (1992) Selective Involvement of Kappa Opioid and Phencyclidine Receptors in the Analgesic and Motor Effects of Dynorphin-A-(1-13)-Tyr-Leu-Phe-Asn-Gly-Pro. Brain Research, 591, 176-180.
https://doi.org/10.1016/0006-8993(92)90994-K
[5]  Herman, B.H. and Goldstein, A. (1985) Antinociception and Paralysis Induced by Intrathecal Dynorphin A. The Journal of Pharmacology and Experimental Therapeutics, 232, 27-32.
http://jpet.aspetjournals.org/content/232/1/27.long
[6]  Tan-No, K., Taira, A., Sakurada, T., Inoue, M., Sakurada, S., Tadano, T., Sato, T., Sakurada, C., Nylander, I., Silberring, J., Terenius, L. and Kisara, K. (1996) Inhibition of Dynorphin-Converting Enzymes Prolongs the Antinociceptive Effect of Intrathecally Administered Dynorphin in the Mouse Formalin Test. European Journal of Pharmacology, 314, 61-67.
https://doi.org/10.1016/S0014-2999(96)00518-3
[7]  Laughlin, T.M., Vanderah, T.W., Lashbrook, J., Nichols, M.L., Ossipov, M., Porreca, F. and Wilcox, G.L. (1997) Spinally Administered Dynorphin A Produces Long-Lasting Allodynia: Involvement of NMDA but Not Opioid Receptors. Pain, 72, 253-260.
https://doi.org/10.1016/S0304-3959(97)00046-8
[8]  Long, J.B., Martinez-Arizala, A., Petras, J.M. and Holaday, J.W. (1986) Endogenous Opioids in Spinal Cord Injury: A Critical Evaluation. Central Nervous System Trauma, 3, 295-315.
https://doi.org/10.1089/cns.1986.3.295
[9]  Long, J.B., Martinez-Arizala, A., Rigamonti, D.D. and Holaday, J.W. (1988) Hindlimb Paralytic Effects of Arginine Vasopressin and Related Peptides Following Spinal Subarachnoid Injection in the Rat. Peptides, 9, 1335-1344.
https://doi.org/10.1016/0196-9781(88)90200-8
[10]  Vanderah, T.W., Laughlin, T., Lashbrook, J.M., Nichols, M.L., Wilcox, G.L., Ossipov, M.H., Malan Jr., T.P. and Porreca, F. (1996) Single Intrathecal Injections of Dynorphin A or Des-Tyr-Dynorphins Produce Long-Lasting Allodynia in Rats: Blockade by MK-801 but Not Naloxone. Pain, 68, 275-281.
https://doi.org/10.1016/S0304-3959(96)03225-3
[11]  Oka, T., Aoki, K., Kajiwara, M., Ishii, K., Kuno, Y., Hiranuma, T. and Matsumiya, T. (1986) Inactivation of [Leu5]-Enkephalin in Three Isolated Preparations: Relative Importance of Aminopeptidase, Endopeptidase-24.11 and Peptidyl Dipeptidase A. NIDA Research Monographs, 75, 259-262.
[12]  Hiranuma, T., Kitamura, K., Taniguchi, T., Kanai, M., Arai, Y., Iwao, K. and Oka, T. (1998) Protection against Dynorphin-(1-8) Hydrolysis in Membrane Preparations by the Combination of Amastatin, Captopril and Phosphoramidon. The Journal of Pharmacology and Experimental Therapeutics, 286, 863-869.
[13]  Kramer, T.H., Davis, P., Hruby, V.J., Burks, T.F. and Porreca, F. (1993) In Vitro Potency, Affinity and Agonist Efficacy of Highly Selective Delta Opioid Receptor Ligands. The Journal of Pharmacology and Experimental Therapeutics, 266, 577-584.
[14]  Akahori, K., Kosaka, K., Jin, X.L., Arai, Y., Yoshikawa, M., Kobayashi, H. and Oka, T. (2008) Great Increase in Antinociceptive Potency of [Leu5]Enkephalin after Peptidase Inhibition. Journal of Pharmacological Sciences, 106, 295-300.
https://doi.org/10.1254/jphs.FP0071318
[15]  Numata, H., Hiranuma, T. and Oka, T. (1988) Inactivation of Dynorphin-(1-8) in Isolated Preparations by Three Peptidases. The Japanese Journal of Pharmacology, 47, 417-423.
https://doi.org/10.1254/jjp.47.417
[16]  Kitamura, K., Akahori, K., Yano, H., Iwao, K. and Oka, T. (2000) Effects of Peptidase Inhibitors on Anti-Nociceptive Action of Dynorphin-(1-8) in Rats. Naunyn-Schmiedeberg’s Archives of Pharmacology, 361, 273-278.
https://doi.org/10.1007/s002109900182
[17]  Ajimi, J., Yoshikawa, M., Takahashi, S., Miura, M., Tsukamoto, H., Kawaguchi, M., Kobayashi, H. and Suzuki, T. (2015) Effect of Three Peptidase Inhibitors on Antinociceptive Potential and Toxicity with Intracerebroventricular Administration of Dynorphin A (1-17) or (1-13) in the Rat. Journal of Anesthesia, 29, 65-77.
https://doi.org/10.1007/s00540-014-1860-4
[18]  Silberring, J., Castello, M.E. and Nyberg, F. (1992) Characterization of Dynorphin A-Converting Enzyme in Human Spinal Cord. An Endoprotease Related to a Distinct Conversion Pathway for the Opioid Heptadecapeptide? The Journal of Biological Chemistry, 267, 21324-21328.
[19]  Magnusson, K., Hallberg, M., Bergquist, J. and Nyberg, F. (2007) Enzymatic Conversion of Dynorphin A in the Rat Brain Is Affected by Administration of Nandrolone Decanoate. Peptides, 28, 851-858.
https://doi.org/10.1016/j.peptides.2006.12.011
[20]  Barnes, K. and Turner, A.J. (1997) The Endothelin System and Endothelin-Converting Enzyme in the Brain: Molecular and Cellular Studies. Neurochemical Research, 22, 1033-1040.
https://doi.org/10.1023/A:1022435111928
[21]  Malmberg, A.B. and Yaksh, T.L. (1992) Isobolographic and Dose-Response Analyses of the Interaction between Intrathecal Mu and Delta Agonists: Effects of Naltrindole and Its Benzofuran Analog (NTB). The Journal of Pharmacology and Experimental Therapeutics, 263, 264-275.
[22]  Walker, E.A. (2006) In Vivo Pharmacological Resultant Analysis Reveals Noncompetitive Interactions between Opioid Antagonists in the Rat Tail-Withdrawal Assay. British Journal of Pharmacology, 149, 1071-1082.
https://doi.org/10.1038/sj.bjp.0706946
[23]  Xie, H., Woods, J.H., Traynor, J.R. and Ko, M.C. (2008) The Spinal Antinociceptive Effects of Endomorphins in Rats: Behavioral and G Protein Functional Studies. Anesthesia & Analgesia, 106, 1873-1881.
https://doi.org/10.1213/ane.0b013e31817300be
[24]  Aoki, K., Kajiwara, M. and Oka, T. (1986) The Inactivation of [Met5]-Enkephalin by Bestatin-Sensitive Aminopeptidase, Captopril-Sensitive Peptidyl Dipeptidase A and Thiorphan-Sensitive Endopeptidase-24.11 in Mouse Vas Deferens. The Japanese Journal of Pharmacology, 40, 297-302.
https://doi.org/10.1254/jjp.40.297
[25]  Yaksh, T.L. and Rudy, T.A. (1976) Chronic Catheterization of the Spinal Subarachnoid Space. Physiology & Behavior, 17, 1031-1036.
https://doi.org/10.1016/0031-9384(76)90029-9
[26]  Janssen, P.A., Niemegeers, C.J. and Dony, J.G. (1963) The Inhibitory Effect of Fentanyl and Other Morphine-Like Analgesics on the Warm Water Induced Tail Withdrawl Reflex in Rats. Arzneimittelforschung, 13, 502-507.
[27]  Yeomans, D.C. and Proudfit, H.K. (1996) Nociceptive Responses to High and Low Rates of Noxious Cutaneous Heating Are Mediated by Different Nociceptors in the Rat: Electrophysiological Evidence. Pain, 68, 141-150.
https://doi.org/10.1016/S0304-3959(96)03177-6
[28]  Park, H.J., Marino, M.J., Rondon, E.S., Xu, Q. and Yaksh, T.L. (2015) The Effects of Intraplantar and Intrathecal Botulinum Toxin Type B on Tactile Allodynia in Mono and Polyneuropathy in the Mouse. Anesthesia & Analgesia, 121, 229-238.
https://doi.org/10.1213/ane.0000000000000777
[29]  Zhu, Q., Sun, Y., Mao, L., Liu, C., Jiang, B., Zhang, W. and Li, J.X. (2016) Antinociceptive Effects of Sinomenine in a Rat Model of Postoperative Pain. British Journal of Pharmacology, 173, 1693-1702.
https://doi.org/10.1111/bph.13470
[30]  Kaneko, T., Nakazawa, T., Ikeda, M., Yamatsu, K., Iwama, T., Wada, T., Satoh, M. and Takagi, H. (1983) Sites of Analgesic Action of Dynorphin. Life Sciences, 33, 661-664.
https://doi.org/10.1016/0024-3205(83)90589-1
[31]  Miura, M., Yoshikawa, M., Watanabe, M., Takahashi, S., Ajimi, J., Ito, K., Ito, M., Kawaguchi, M., Kobayashi, H. and Suzuki, T. (2013) Increase in Antinociceptive Effect of [leu5]Enkephalin after Intrathecal Administration of Mixture of Three Peptidase Inhibitors. The Tokai Journal of Experimental and Clinical Medicine, 38, 62-70.
[32]  Back, S.A. and Gorenstein, C. (1989) Fluorescent Histochemical Localization of Neutral Endopeptidase-24.11 (Enkephalinase) in the Rat Spinal Cord. Journal of Comparative Neurology, 280, 436-450.
https://doi.org/10.1002/cne.902800309
[33]  Noble, F., Banisadr, G., Jardinaud, F., Popovici, T., Lai-Kuen, R., Chen, H., Bischoff, L., Parsadaniantz, S.M., Fournie-Zaluski, M.C. and Roques, B.P. (2001) First Discrete Autoradiographic Distribution of Aminopeptidase N in Various Structures of Rat Brain and Spinal Cord Using the Selective Iodinated Inhibitor [125I]RB 129. Neuroscience, 105, 479-488.
https://doi.org/10.1016/S0306-4522(01)00185-3
[34]  Waksman, G., Bouboutou, R., Devin, J., Bourgoin, S., Cesselin, F., Hamon, M., Fournie-Zaluski, M.C. and Roques, B.P. (1985) In Vitro and in Vivo Effects of Kelatorphan on Enkephalin Metabolism in Rodent Brain. European Journal of Pharmacology, 117, 233-243.
https://doi.org/10.1016/0014-2999(85)90608-9
[35]  Waksman, G., Hamel, E., Fournie-Zaluski, M.C. and Roques, B.P. (1986) Autoradiographic Comparison of the Distribution of the Neutral Endopeptidase “Enkephalinase” and of Mu and Delta Opioid Receptors in Rat Brain. Proceedings of the National Academy of Sciences of the United States of America, 83, 1523-1527.
https://doi.org/10.1073/pnas.83.5.1523
[36]  Kuno, Y., Aoki, K., Kajiwara, M., Ishii, K. and Oka, T. (1986) The Relative Potency of Enkephalins and Beta-Endorphin in Guinea-Pig Ileum, Mouse Vas Deferens and Rat Vas Deferens after the Administration of Peptidase Inhibitors. The Japanese Journal of Pharmacology, 41, 273-281.
https://doi.org/10.1254/jjp.41.273
[37]  Taylor, D.A. (2011) In Vitro Opioid Receptor Assays. Current Protocols in Pharmacology, 55, 4.8.1-4.8.34.
https://doi.org/10.1002/0471141755.ph0408s55
[38]  Hughes, J., Smith, T.W., Kosterlitz, H.W., Fothergill, L.A., Morgan, B.A. and Morris, H.R. (1975) Identification of Two Related Pentapeptides from the Brain with Potent Opiate Agonist Activity. Nature, 258, 577-580.
https://doi.org/10.1038/258577a0
[39]  Goldstein, A., Fischli, W., Lowney, L.I., Hunkapiller, M. and Hood, L. (1981) Porcine Pituitary Dynorphin: Complete Amino Acid Sequence of the Biologically Active Heptadecapeptide. Proceedings of the National Academy of Sciences of the United States of America, 78, 7219-7223.
https://doi.org/10.1073/pnas.78.11.7219
[40]  Chavkin, C. and Goldstein, A. (1981) Specific Receptor for the Opioid Peptide Dynorphin: Structure—Activity Relationships. Proceedings of the National Academy of Sciences of the United States of America, 78, 6543-6547.
https://doi.org/10.1073/pnas.78.10.6543
[41]  Mansour, A., Hoversten, M.T., Taylor, L.P., Watson, S.J. and Akil, H. (1995) The Cloned Mu, Delta and Kappa Receptors and Their Endogenous Ligands: Evidence for Two Opioid Peptide Recognition Cores. Brain Research, 700, 89-98.
https://doi.org/10.1016/0006-8993(95)00928-J
[42]  Naqvi, T., Haq, W. and Mathur, K.B. (1998) Structure-Activity Relationship Studies of Dynorphin A and Related Peptides. Peptides, 19, 1277-1292.
https://doi.org/10.1016/S0196-9781(98)00042-4
[43]  Rojewska, E., Makuch, W., Przewlocka, B. and Mika, J. (2014) Minocycline Prevents Dynorphin-Induced Neurotoxicity during Neuropathic Pain in Rats. Neuropharmacology, 86, 301-310.
https://doi.org/10.1016/j.neuropharm.2014.08.001

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133