全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Patterns of Genetic Diversity of the White-Nosed Coati Reveals Phylogeographically Structured Subpopulations in Mexico

DOI: 10.4236/nr.2017.81003, PP. 31-53

Keywords: Alleles, Cytochrome b, Heterozygosity, Microsatellites, Nasua narica, Procyonids

Full-Text   Cite this paper   Add to My Lib

Abstract:

Coatis (Procyonidae; Nasua) are considered the only truly social meso-carnivore mammals in Neotropical forests. In Mexico, white-nosed coatis (Nasua narica) are suspected to have undergone population reduction due to habitat loss and fragmentation and led to a lack of genetic adaptability and genetic isolation throughout its range. We examined patterns of genetic diversity and connectivity of five populations of Nasua narica distributed throughout Mexico (n = 60) by sequencing an ≈ 800 bp fragment of the mitochondrial cytochrome-b gene and also by screening 12 microsatellite loci. We found moderate to high levels of genetic variability for both genetic markers. We recorded twenty-two different cytochrome-b haplotypes throughout the 5 sampled areas and found that each of the sampled population of white-nosed coatis in Mexico harbors unique haplotypes and only three haplotypes were shared among two different populations that were closer geographically. All populations had high haplotype diversity (h) (0.968 ± 0.008 (SD)) but lower levels of nucleotide diversity (π) of 0.007 ± 0.001 (SD). All microsatellite loci were polymorphic in all of the populations and the mean number of alleles per locus was 5.033 ± 1.545 (SD) with expected (HE) and observed (HO) heterozygosity values of 0.774 and 0.664, respectively. However, low Wright F statistic values suggest the existence of a reduced heterozygosity (FST = 0.203, FIS = 0.134 and FIT = 0.310). Significant differences between the five populations confirmed isolation by distance, which suggests genetic structure among five subpopulations.

References

[1]  Montiel-Reyes, F., Maldonado, J.E., Del Real-Monroy, M., Martínez-Méndez, N. and Ortega, J. (2014) Non-Invasive Sampling Reveals Fine-Scale Genetic Structure in Black Bear Ursus americanus Populations from Northeastern Mexico. Endangered Species Research, 26, 179-188. https://doi.org/10.3354/esr00626
[2]  Pilot, M., Jedrzejewski, W., Branicki, W., Sidorovich, V.E., Jedrzejewski, B., Stachura, K. and Funk, S.M. (2006) Ecological Factors Influence Population Genetic Structure of European Grey Wolves. Molecular Ecology, 15, 4533-4553. https://doi.org/10.1111/j.1365-294X.2006.03110.x
[3]  Altmann, J., Alberts, S.C., Haines, S.A., Dubach, J., Muruthi, P., Coote, T., Geffen, E., Cheesman, D.J., Mututua, R.S., Saiyalel, S.N., Wayne, R.K., Lacy, R.C. and Bruford, M.W. (1996) Behavior Predicts Genetic Structure in a Wild Primate Group. Proceedings of the National Academy of Sciences of the United States of America, 93, 5797-5801. https://doi.org/10.1073/pnas.93.12.5797
[4]  Ross, K.G. (2001) Molecular Ecology of Social Behaviour: Analyses of Breeding Systems and Genetic Structure. Molecular Ecology, 10, 265-284. https://doi.org/10.1046/j.1365-294x.2001.01191.x
[5]  Hartl, D.L. and Clark, G.C. (1997) Principles of Population Genetics. Sinauer Associates, Sunderland.
[6]  Ruiz-Sanchez, E. and Specht, C.D. (2013) Influence of the Geological History of the Trans-Mexican Volcanic Belt on the Diversification of Nolina parviflora (Asparagaceae: Nolinoideae). Journal of Biogeography, 40, 1336-1347. https://doi.org/10.1111/jbi.12073
[7]  Templeton, A.R. (1998) Nested Clades Analyses of Phylogeographic Data: Testing Hypotheses about Gene Flow and Population History. Molecular Ecology, 7, 381-397. https://doi.org/10.1046/j.1365-294x.1998.00308.x
[8]  Hanzen, D.H. (1967) Why Mountain Passes Are Higher in the Tropics. American Naturalist, 101, 233-249. https://doi.org/10.1086/282487
[9]  Long, E.S., Diefenbach, D.R., Wallingford, B.D. and Rosenberry, C.S. (2010) Influence of Roads, Rivers, and Mountains on Natal Dispersal of White-Tailed Deer. Journal of Wildlife Management, 74, 1242-1249. https://doi.org/10.1111/j.1937-2817.2010.tb01244.x
[10]  Wang, A.J. (2009) Fine-Scale Population Structure in a Desert Amphibian: Landscape Genetics of the Black Toad (Bufo exsul). Molecular Ecology, 18, 3847-3856. https://doi.org/10.1111/j.1365-294X.2009.04338.x
[11]  Riley, S.P.D., Pollinger, J.P., Sauvajot, R.M., York, E.C., Bromley, C., Fuller, T.K. and Wayne, R.K. (2006) A Southern California Freeway Is a Physical and Social Barrier to Gene Flow in Carnivores. Molecular Ecology, 15, 1733-1741. https://doi.org/10.1111/j.1365-294X.2006.02907.x
[12]  Wilson, R.E., Farley, S.D., McDonough, T.J., Talbot, S.L. and Barboza, P.S. (2015) A Genetic Discontinuity in Moose (Alces alces) in Alaska Corresponds with Fenced Transportation Infrastructure. Conservation Genetics, 16, 791-800. https://doi.org/10.1007/s10592-015-0700-x
[13]  Zalewski, A., Piertney, S.B., Zalewska, H. and Lambin, X. (2009) Landscape Barriers Reduce Gene Flow in an Invasive Carnivore: Geographical and Local Genetic Structure of American Mink in Scotland. Molecular Ecology, 18, 1601-1615. https://doi.org/10.1111/j.1365-294X.2009.04131.x
[14]  Redford, K.H., Amato, G., Baillie, J., Beldomenico, P., Bennett, E.L., Clum, N., Cook, R., Fonseca, G., Hedges, S., Launay, F., Lieberman, S., Mace, G.M., Murayama, A., Putnam, A., Robinson, J.G., Rosenbaum, H., Sanderson, E.W., Stuart, S.N., Thomas, P. and Thorbjarnarson, J. (2011) What Does It Mean to Successfully Conserve a (Vertebrate) Species? BioScience, 61, 39-48. https://doi.org/10.1525/bio.2011.61.1.9
[15]  Jones, M.E., Paetkau, D., Geffen, E. and Moritz, C. (2004) Genetic Diversity and Population Structure of Tasmanian Devils, the Largest Marsupial Carnivore. Molecular Ecology, 13, 2197-2209. https://doi.org/10.1111/j.1365-294X.2004.02239.x
[16]  Schipper, J., Chanson, J.S., Chiozza, F., et al. (2008) The Status of the World’s Land and Marine Mammals: Diversity, Threat, and Knowledge. Science, 322, 225-230. https://doi.org/10.1126/science.1165115
[17]  Fulton, T.L. and Strobeck, C. (2007) Novel Phylogeny of the Raccoon Family (Procyonidae: Carnivora) Based on Nuclear and Mitochondrial DNA Evidence. Molecular Phylogenetics and Evolution, 43, 1171-1177. https://doi.org/10.1016/j.ympev.2006.10.019
[18]  Lorenzo, M.C., Espinoza, M.E. and García, B.M. (2006) Genética y conservación en mamíferos silvestres mexicanos. In: Pimentel, P.E., Ortiz, M.A.R. and Brena, V.M. Eds., Tópicos de genética, Universidad Autónoma del Estado de México, Toluca, 165-188.
[19]  Ritchie, E.G. and Johnson, C.N. (2009) Predator Interactions, Mesopredator Release and Biodiversity Conservation. Ecology Letters, 12, 982-998. https://doi.org/10.1111/j.1461-0248.2009.01347.x
[20]  Roemer, G.W., Gompper, M.E. and Van Valkengurgh, V. (2009) The Ecological Role of the Mammalian Mesocarnivore. BioScience, 59, 165-173. https://doi.org/10.1525/bio.2009.59.2.9
[21]  Kyle, C.J., Robitaille, J.F. and Strobeck, C. (2001) Genetic Variation and Structure of Fisher (Martes pennanti) Populations across North America. Molecular Ecology, 10, 2341-2347. https://doi.org/10.1046/j.1365-294X.2001.01351.x
[22]  Wisely, S.M., Buskirk, S.W., Russell, G.A., Aubry, K.B. and Zielinski, W.J. (2004) Genetic Diversity and Structure of the Fisher (Martes pennanti) in a Peninsular and Peripheral Metapopulation. Journal of Mammalogy, 85, 640-648. https://doi.org/10.1644/BEL-011
[23]  Quaglietta, L., Fonseca, V.C., Hájková, P., Mira, A. and Boitani, L. (2013) Fine-Scale Population Genetic Structure and Short-Range Sex-Biased Dispersal in a Solitary Carnivore, Lutra lutra. Journal of Mammalogy, 94, 561-571. https://doi.org/10.1644/12-MAMM-A-171.1
[24]  Tison, J.L., Blennow, V., Palkopoulou, E., Gustafsson, P., Roos, A. and Dalén, L. (2015) Population Structure and Recent Temporal Changes in Genetic Variation in Eurasian otters from Sweden. Conservation Genetics, 16, 371-384. https://doi.org/10.1007/s10592-014-0664-2
[25]  Ortega, J., Navarrete, D. and Maldonado, J.E. (2012) Non-Invasive Sampling of Endangered Neotropical River Otters Reveals High Levels of Dispersion in the Lacantun River System of Chiapas, Mexico. Animal Biodiversity and Conservation, 35, 59-69.
[26]  Kyle, C.J. and Strobeck, C. (2001) Genetic Structure of North American Wolverine (Gulo gulo) Populations. Molecular Ecology, 10, 337-347. https://doi.org/10.1046/j.1365-294x.2001.01222.x
[27]  Gompper, M.E., Gittleman, J.L. and Wayne, R.K. (1997) Genetic Relatedness, Coalitions and Social Behavior of White-Nosed Coatis, Nasua narica. Animal Behaviour, 53, 781-797. https://doi.org/10.1006/anbe.1996.0344
[28]  Gompper, M.E., Gittleman, J.L. and Wayne, R.K. (1998) Dispersal, Philopatry, and Genetic Relatedness in a Social Carnivore: Comparing Males and Females. Molecular Ecology, 7, 157-163. https://doi.org/10.1046/j.1365-294x.1998.00325.x
[29]  Ratnayeke, S., Tuskan, G.A. and Pelton, M.R. (2002) Genetic Relatedness and Female Spatial Organization in a Solitary Carnivore, the Raccoon, Procyon lotor. Molecular Ecology, 11, 1115-1124. https://doi.org/10.1046/j.1365-294X.2002.01505.x
[30]  Hirsh, B.T. and Maldonado, J.E. (2011) Familiarity Breeds Progeny: Sociality Increases Reproductive Success in Adult Male Ring-Tailed Coatis (Nasua nasua). Molecular Ecology, 20, 409-419. https://doi.org/10.1111/j.1365-294X.2010.04940.x
[31]  Hirsh, B.T., Stanton, M.A. and Maldonado, J.E. (2012) Kinship Shapes Affiliative Social Networks but Not Aggression in Ring Tailed-Coatis. PLoS ONE, 7, e37301. https://doi.org/10.1371/journal.pone.0037301
[32]  Hauver, S., Hirsh, B.T., Prange, S., Dubach, J. and Gerth, S.D. (2013) Age, but Not Sex or Genetic Relatedness, Shapes Raccoon Dominance Patterns. Ethology, 119, 1-10. https://doi.org/10.1111/eth.12118
[33]  Koepfli, K.P., Gompper, M.E., Eizirik, E., Ho, C.C., Linden, L., Maldonado, J.E. and Wayne, R.K. (2007) Phylogeny of the Procyonidae (Mammalia: Carnivora), Molecules, Morphology and the Great American Interchange. Molecular Phylogenetics and Evolution, 43, 1076-1095. https://doi.org/10.1016/j.ympev.2006.10.003
[34]  Lonsinger, R.C., Schweizer, R.M., Pollinger, J.P., Wayne, R.K. and Roemer, G.W. (2015) Fine-Scale Genetic Structure of the Ringtail (Bassariscus astutus) in a Sky Island Mountain Range. Journal of Mammalogy, 96, 257-268. https://doi.org/10.1093/jmammal/gyv050
[35]  Tsuchiya-Jerep, M.T.N. (2009) Filogeografia, história demográfica e diversidade molecular de duas espécies neotropicais da família procyonidae (Mammalia, Carnívora): Nasua nasua e Procyon cancrivorus. MSc Dissertation, Pontifícia Universidade Católica Do Rio Grande Do Sul, Porto Alegre.
[36]  Helgen, K.M., Kays, R., Helgen, L.E., Tsuchiya-Jerep, T.N., Pinto, C.M., Koepfli, K.P., Eizirik, E. and Maldonado, J.E. (2009)Taxonomic Boundaries and geoGraphic Distributions Revealed by an Integrative Systematic Overview of the Mountain Coatis, Nasuella (Carnivora: Procyonidae). Small Carnivore Conservation, 41, 65-74.
[37]  Gompper, M.E. (1995) Nasua narica. Mammalian Species, 487, 1-10. https://doi.org/10.2307/3504195
[38]  Aranda, S.M.J. (2012) Manual para el rastreo de mamíferos silvestres de México. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO). México DF. https://doi.org/10.5962/bhl.title.113211
[39]  Gompper, M.E. (1997) Population Ecology of the White-Nosed Coati (Nasua narica) on Barro Colorado Island, Panama. Journal of Zoology, 241, 441-455. https://doi.org/10.1111/j.1469-7998.1997.tb04836.x
[40]  Valenzuela, D. and Ceballos, G. (2000) Habitat Selection, Home Range, and Activity of the White-Nosed Coati (Nasua narica) in a Mexican Tropical Dry Forest. Journal of Mammalogy, 81, 810-819. https://doi.org/10.1644/1545-1542(2000)081<0810:HSHRAA>2.3.CO;2
[41]  Hass, C.C. (2002) Home-Range Dynamics of White-Nosed Coatis in Southeastern Arizona. Journal of Mammalogy, 83, 934-946. https://doi.org/10.1644/1545-1542(2002)083<0934:HRDOWN>2.0.CO;2
[42]  Valenzuela, D. and MacDonald, D.W. (2002) Home-Range Use by White-Nosed Coatis (Nasua narica): Limited Water and a Test of the Resource Dispersion Hypothesis. Journal of Zoology, 258, 247-256. https://doi.org/10.1017/S0952836902001358
[43]  Storz, J.F., Bhat, H.R. and Kunz, H.R. (2001) Genetic Consequences of Polygyny and Social Structure in an Indian Fruit Bat, Cynopterus sphinx. I. Inbreeding, Outbreeding, and Population Subdivision. Evolution, 55, 1215-1223. https://doi.org/10.1111/j.0014-3820.2001.tb00641.x
[44]  Frantz, A.C., Do Linh San, E., Pope, L.C. and Burke, T. (2010) Using Genetic Methods to Investigate Dispersal in Two Badger (Meles meles) Populations with Different Ecological Characteristics. Heredity, 104, 493-501. https://doi.org/10.1038/hdy.2009.136
[45]  Cuarón, A.D., Helgen, K., Reid, F., Pino, J. and Gónzalez-Maya, J.F. (2016) Nasua narica. The IUCN Red List of Threatened Species, Version 2016.2. http://www.iucnredlist.org/details/41683/0
[46]  Glatston, A.R. (1994) The Red Panda, Olingos, Coatis, Raccoons, and Their Relatives. Status Survey and Conservation Action Plan for Procyonids and Ailurids. IUCN/SSC Mustelid, Viverrid and Procyonid Specialist Group. International Union for Conservation of Nature and Natural Resources, Switzerland.
[47]  Morrone, J.J. (2005) Hacia una síntesis biogeográfica de México. Revista Mexicana de Biodiversidad, 76, 207-252.
[48]  Evans, R.H. (2002) Anesthesia and Restraint of Raccoons and Relatives (Carnivora, Procyonidae). http://www.ivis.org
[49]  Kollias, G. and Abou, M.N. (2007) Procyonids and Mustelids. In: West, G., Heard, D. and Caulkett, N., Eds., Zoo Animal and Wildlife Immobilization and Anesthesia, Blackwell Publishing, Ames, 417-428. https://doi.org/10.1002/9780470376478.ch36
[50]  Sikes, R.S., Gannon, W.L. and the Animal Care and Use Committee of the American Society of Mammalogists (2011) Guidelines of the American Society of Mammalogists for the Use of Wild Mammals in Research. Journal of Mammalogy, 92, 235-253. https://doi.org/10.1644/10-MAMM-F-355.1
[51]  Aljanabi, S.M. and Martinez, I. (1997) Universal and Rapid Salt-Extraction of High Quality Genomic DNA for PCR-Based Techniques. Nucleic Acids Research, 25, 4692-4693. https://doi.org/10.1093/nar/25.22.4692
[52]  Irwin, D.M., Kocher, T.D. and Wilson, A.C. (1991) Evolution of the Cytochrome b Gene of Mammals. Journal of Molecular Evolution, 32, 128-144. https://doi.org/10.1007/BF02515385
[53]  Sánchez Garibay, E., Silva-Caballero, A., Del Real-Monroy, M., Lance, S.L., Valenzuela-Galván, D. and Ortega, J. (2012) Development of 24 Microsatellite Markers for the White Nosed Coati (Nasua narica) Using 454 Sequencing. Conservation Genetics Resources, 4, 661-663. https://doi.org/10.1007/s12686-012-9617-6
[54]  Hall, T. (1999) BioEdita User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95-98.
[55]  Darriba, D., Taboada, G.L., Doallo, R. and Posada, D. (2012) JModelTest 2: More Models, New Heuristics and Parallel Computing. Nature Methods, 9, 772. https://doi.org/10.1038/nmeth.2109
[56]  Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W. and Gascuel, O. (2010) New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Systematic Biology, 59, 307-321. https://doi.org/10.1093/sysbio/syq010
[57]  Ronquist, F. and Huelsenbeck, J.P. (2003) MrBayes 3: Bayesian Phylogenetic Inference under Mixed Models. Bioinformatics, 19, 1572-1574. https://doi.org/10.1093/bioinformatics/btg180
[58]  Librado, P. and Rozas, J. (2009) DnaSP v5 a Software for Comprehensive Analysis of DNA Polymorphism Data. Bioinformatics, 25, 1451-1452. https://doi.org/10.1093/bioinformatics/btp187
[59]  Bandelt, H.J., Forster, P. and Rohl, A. (1999) Median-Joining Networks for Inferring Intraspecific Phylogenies. Molecular Biology and Evolution, 16, 37-48. https://doi.org/10.1093/oxfordjournals.molbev.a026036
[60]  Cockerham, C.C. and Weir, B.S. (1993) Estimation of Gene Flow from F-Statistics. Evolution, 47, 855-863. https://doi.org/10.2307/2410189
[61]  Excoffier, L., Smouse, P.E. and Quattro, J.M. (1992) Analysis of Molecular Variance Inferred from Metric Distance among DNA Haplotypes: Application to Human Mitochondrial DNA Restriction Data. Genetics, 131, 479-491.
[62]  Excoffier, L, and Lischer, H.E.L. (2010) Arlequin Suite ver 3.5, a New Series of Programs to Perform Population Genetics Analyses under Linux and Windows. Molecular Ecology Resources, 10, 564-567. https://doi.org/10.1111/j.1755-0998.2010.02847.x
[63]  Tajima, F. (1989) Statistical Method for Testing the Neutral Mutation Hypothesis by DNA Polymorphism. Genetics, 123, 585-595.
[64]  Lewis, P.O. and Zaykin, D. (2001) GDA (Genetic Data Analysis): Computer Program for the Analysis of Allelic Data. Versión 1.1, University of Connecticut, Storrs. http://phylogeny.uconn.edu/software/
[65]  Nei, M. (1987) Molecular Evolutionary Genetics. Columbia University Press, New York.
[66]  Rousset, F. (2008) Genepop’007: A Complete Re-Implementation of the Genepop Software for Windows and Linux. Molecular Ecology Resources, 8, 103-106. https://doi.org/10.1111/j.1471-8286.2007.01931.x
[67]  Weir, B.S. and Cockerham, C.C. (1984) Estimating F-Statistics for the Analysis of Population Structure. Evolution, 38, 1358-1370. https://doi.org/10.2307/2408641
[68]  Rice, W.R. (1989) Analyzing Tables of Statistical Tests. Evolution, 43, 223-225. https://doi.org/10.2307/2409177
[69]  Van Oosterhout, C., Hutchinson, W.F., Wills, D.P.M. and Shipley, P. (2004) MICRO-CHECKER: Software for Identifying and Correcting Genotyping Errors in Microsatellite Data. Molecular Ecology Resources, 4, 535-538. https://doi.org/10.1111/j.1471-8286.2004.00684.x
[70]  Brookfield, J.F.Y. (1996) A Simple New Method for Estimating Null Allele Frequency from Heterozygote Deficiency. Molecular Ecology, 5, 453-455. https://doi.org/10.1111/j.1365-294X.1996.tb00336.x
[71]  Wright, S. (1951) The Genetical Structure of Populations. Annals of Eugenics, 15, 323-354. https://doi.org/10.1111/j.1469-1809.1949.tb02451.x
[72]  Goudet, J. (1995) FSTAT (Version 1.2): A Computer Program to Calculate F-Statistics. Journal of Heredity, 86, 485-486.
[73]  Piry, S., Alapetite, A., Cornuet, J.M., Paetkau, D., Baudouin, L. and Estoup, A. (2004) GeneClass2: A Software for Genetic Assignment and First-Generation Migrant Detection. Journal of Heredity, 95, 536-539. https://doi.org/10.1093/jhered/esh074
[74]  Rannala, B. and Mountain, J.L. (1997) Detecting Immigration by Using Multilocus Genotypes. Proceedings of the National Academy of Sciences of the United States of America, 94, 9197-9201. https://doi.org/10.1073/pnas.94.17.9197
[75]  Rousset, F. (1997) Genetic Differentiation and Estimation of Gene Flow from F-Statistics under Isolation by Distance. Genetics, 145, 1219-1228.
[76]  Mantel, N. (1967) The Detection of Disease Clustering and Generalized Regression Approach. Cancer Research, 27, 209-220.
[77]  Barton, N.H. and Slatkin, M. (1986) A Quasi-Equilibrium Theory of the Distribution of Rare Alleles in a Subdivided Population. Heredity, 56, 409-415. https://doi.org/10.1038/hdy.1986.63
[78]  Pritchard, J.K., Stephens, M. and Donnelly, P. (2000) Inference of Population Structure Using Multilocus Genotype Data. Genetics, 155, 945-959.
[79]  Corander, J., Marttinen, P., Sirén, J. and Tang, J. (2008) Enhanced Bayesian Modelling in BAPS Software for Learning Genetic Structures of Populations. BMC Bioinformatics, 9, 539. https://doi.org/10.1186/1471-2105-9-539
[80]  Hasegawa, M., Kishino, H. and Yano, T. (1985) Dating the Human-Ape Split by a Molecular Clock of Mitochondrial DNA. Journal of Molecular Evolution, 22, 160-174. https://doi.org/10.1007/BF02101694
[81]  McFadden, K.W. (2004) The Ecology, Evolution and Natural History of the Endangered Carnivores of Cozumel Island, Mexico. PhD Dissertation, Columbia University, New York.
[82]  Grant, W.S. and Bowen, B.W. (1998) Shallow Population Histories in Deep Evolutionary Lineages of Marine Fishes: Insights for Sardines and Anchovies and Lessons for Conservation. Journal of Heredity, 89, 415-426. https://doi.org/10.1093/jhered/89.5.415
[83]  Hamilton, M.B. (2009) Population Genetics. Wiley-Blackwell, West Sussex.
[84]  Costa, E.M.J., Mauro, R.A. and Silva, J.S.V. (2009) Group Composition and Activity Patterns of Brown-Nosed Coatis in Savanna Fragments, Mato Grosso do Sul, Brazil. Brazilian Journal of Biology, 69, 985-991. https://doi.org/10.1590/S1519-69842009000500002
[85]  Lanning, D.V. (1976) Density in Movements of the Coati in Arizona. Journal of Mammalogy, 57, 609-611. https://doi.org/10.2307/1379318
[86]  Wright, S. (1965) The Interpretation of Population Structure by F-Statistics with Special Regard to Systems of Mating. Evolution, 19, 395-420. https://doi.org/10.2307/2406450
[87]  Wright, S. (1978) Evolution and the Genetics of Populations. Vol. 4. Variability within and among Natural Populations. University of Chicago Press, Chicago.
[88]  Hirsh, B.T. (2011) Long Term Adult Male Sociality in Ring-Tailed Coatis (Nasua nasua). Mammalia, 75, 301-304. https://doi.org/10.1515/mamm.2011.030
[89]  Freeland, J.R. (2005) Molecular Ecology. Wiley, South Sussex.
[90]  Selkoe, K.A. and Toonen, R.J. (2006) Microsatellites for Ecologists: A Practical Guide to Using and Evaluating Microsatellite Markers. Ecology Letters, 9, 615-629. https://doi.org/10.1111/j.1461-0248.2006.00889.x
[91]  Eguiluz de Antunano, S., Aranda-García, M. and Marrett, R. (2000) Tectónica de la Sierra Madre Oriental, México. Boletín de la Sociedad Geológica Mexicana, 53, 1-26.
[92]  Ferrari, L., Valencia, M. and Bryan, S. (2005) Magmatismo y tectónica en la Sierra Madre Occidental y su relación con la evolución de la margen occidental de Norteamérica. Boletín de la Sociedad Geológica Mexicana, 57, 343-378.
[93]  Wolsan, M. and Lange-Badré, B. (1996) An Arctomorph Carnivoran Skull from the Phosphorites du Quercy and the origin of Procyonids. Acta Palaeontologica Polonica, 41, 277-298.
[94]  Webb, S.D. (1997) The Great American Faunal Interchange. In: Coates, A.G., Ed., Central America: A Natural and Cultural History, Yale University Press, New Haven, 97-122.
[95]  Baskin, J.A. (2004) Bassariscus and Probassariscus (Mammalia: Carnivora, Procyonidae) from the Early Barstovian (Middle Miocene). Journal of Vertebrate Paleontology, 24, 709-720. https://doi.org/10.1671/0272-4634(2004)024[0709:BAPMCP]2.0.CO;2
[96]  Valenzuela, D. (1998) Natural History of the White-Nosed Coati, Nasua narica, in a Tropical Dry Forest of Western of México. Revista Mexicana de Mastozoología, 3, 26-44.
[97]  Sáenz, J. (1994) Ecología del pizote (Nasua narica) y su papel como dispersor de semillas en el bosque seco neotropical, Costa Rica. MSc Dissertation, Universidad Nacional Costa Rica, Heredia,
[98]  Gómez-Ortiz, Y. and Monroy-Vilchis, O. (2013) Feeding Ecology of Puma Puma concolor in Mexican Montane Forests with Comments about Jaguar Panthera onca. Wildlife Biology, 19, 173-187. https://doi.org/10.2981/12-092
[99]  Hernández-SaintMartín, A.D., Rosas-Rosas, O.C., Palacio-Núnez, J., Tarango- Arambula, L.A., Clemente-Sánchez, F. and Hoogesteijn, A.L. (2015) Food Habits of Jaguar and Puma in a Protected Area and Adjacent Fragmented Landscape of Northeastern Mexico. Natural Areas Journal, 35, 308-317. https://doi.org/10.3375/043.035.0213.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133