全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Application of Antimicrobial Microcapsules on Agrotextiles

DOI: 10.4236/jacen.2017.61004, PP. 62-82

Keywords: Microcapsules, Oregano Oil, Co-Extrusion and Gelling, Coating, Hemp Agrotextil and Antimicrobial Activity

Full-Text   Cite this paper   Add to My Lib

Abstract:

The aim of this work was to develop a functional biodegradable nonwoven with antimicrobial microcapsules maintaining the stability and biodegradability of the nonwoven for use in agriculture applications. The nonwoven was obtained using hemp fibers by Wetlaid technology. Microcapsules were prepared by co-extrusion/gelling method with alginate as shell and oregano oil as core material. The microcapsules were developed to protect and control release of oregano oil. Microcapsules were incorporated on the nonwoven by coating method using a natural polymer as a graft material. After incorporating micro-capsules, the nonwoven was subjected to several tests in order to determinate the microcapsules fixation and their functionality. The nonwovens were characterized for their antimicrobial activity against different kinds of bacteria and fungi. Nonwoven loaded with microcapsules was found to show good antimicrobial activity in comparison with nonwoven that was not loaded with microcapsules.

References

[1]  Sanjay, M.R., Arpitha, R. and Naik, L. (2016) Applications of Natural Fibers and Its Composites: An Overview. Natural Resources, 7, 108-114.
https://doi.org/10.4236/nr.2016.73011
[2]  Fedorova, N., Verenich, S. and Pourdeyhimi, B. (2007) Strength Optimization of Thermally Bonded Spunbond Nonwovens. Journal of Engineered Fibers and Fabrics, 2, 38-48.
[3]  Kim, H.S., Ito, H., Kikutani, T. and Okui, N. (1999) Computational Analysis on the Thermal Bonding Behaviour of Bicomponentfibres. Journal of the Textile Institute, 90, 508-525.
https://doi.org/10.1080/00405000.1999.10750050
[4]  Rawal, A., Priyadarshi, A., Lomov, S.V., Verpoest, I. and Vankerrebrouck, J. (2010) Tensilebehaviour of Thermally Bonded Nonwoven Structures: Model Description. Journal of Materials Science, 45, 2274-2284.
https://doi.org/10.1007/s10853-009-4152-x
[5]  Safavi, A., Fathi, S., Babaei, M.R., Mansoori, Z. and Latifi, M. (2009) Experimental and Numerical Analysis of Fiber Characteristics Effects on Fiber Dispersion for Wet-Laid Nonwoven. Fibers and Polymers, 10, 231-236.
https://doi.org/10.1007/s12221-009-0231-5
[6]  Laohasongkram K., Mahamaktudsanee T. and Chaiwanichsiri S. (2011) Microencapsulation of Macadamida Oil by Spray Drying. Procedia Food Science, 1, 1660-1665.
https://doi.org/10.1016/j.profoo.2011.09.245
[7]  Vidovic S.S., Vladic J.Z., Vastag Z.G, Zekovic Z.P. and Popovic L.M.( 2014) Maltodextrin as a Carrier of Health Benefit Compounds in Saturejamontana Dry Powder Extract Obtained by Spray Drying Technique. Powder Technology, 258, 209-215.
https://doi.org/10.1016/j.powtec.2014.03.038
[8]  Osorio, C., Acevedo, B., Hillebrand, S., Carriazo, J., Winterhalter, P. and Morales, A.L. (2010) Microencapsulation by Spray-Drying of Anthocyanin Pigments from Corozo (Bactris guineensis) Fruit. Journal of Agricultural and Food Chemistry, 58, 6977-6985.
https://doi.org/10.1021/jf100536g
[9]  Varonaa, S., Karethb, S., Martín, á. and Coceroa, M.J. (2010) Formulation of Lavandin Essential Oil with Biopolymers by PGSS for Application as Biocide in Ecological Agriculture. Journal of Supercritical Fluids, 54, 369-377.
https://doi.org/10.1016/j.supflu.2010.05.019
[10]  Varona, S., Martín, A. and Cocero, M.J. (2009) Formulation of a Natural Biocide Based on Lavandin Essential Oil by Emulsification Using Modified Starches. Chemical Engineering and Processing, 48, 1121-1128.
https://doi.org/10.1016/j.cep.2009.03.002
[11]  Kha, T.C., Nguyena, M.H., Roacha, P.D. and Stathopoulos, C.E. (2014) Microencapsulation of Gac Oil: Optimisation of Spray Drying Conditions Using Response Surface Methodology. Powder Technology, 264, 298-309.
https://doi.org/10.1016/j.powtec.2014.05.053
[12]  Pitalua, E., Jimenez, M., Vernon-Carter, E.J. and Beristain, C.I. (2010) Antioxidative Activity of Microcapsules with Beetroot Juice Using Gum Arabic as Wall Material. Food and Bioproducts Processing, 88, 253-258.
https://doi.org/10.1016/j.fbp.2010.01.002
[13]  Bagheri, L., Madadlou, A., Yarmand, M. and Mousav, M.E. (2014) Spray-Dried Alginate Microparticles Carrying Caffeine-Loaded and Potentially Bioactive Nanoparticles. Food Research International, 62, 1113-1119.
https://doi.org/10.1016/j.foodres.2014.05.040
[14]  Malmo, C., La Storia, A. and Mauriello, G. (2013) Microencapsulation of Lactobacillus reuteri DSM 17938 Cells Coated in Alginate Beads with Chitosan by Spray Drying to Use as a Probiotic Cell in a Chocolate Soufflé. Food Bioprocess Technology, 6, 795-805.
https://doi.org/10.1007/s11947-011-0755-8
[15]  Li, Y., Ai, L., Yokoyama, W., Shoemaker, C.F., Wei, D., Ma, J. and Zhong, F. (2013) Properties of Chitosan-Microencapsulated Orange Oil Prepared by Spray-Drying and Its Stability to Detergents. Journal of Agricultural and Food Chemistry, 61, 3311-3319.
https://doi.org/10.1021/jf305074q
[16]  Estevinho, B.N., Rocha, F., Santos, L. and Alves, A. (2013) Microencapsulation with Chitosan by Spray Drying for Industry Applications—A Review. Trends in Food Science & Technology, 31, 138-155.
https://doi.org/10.1016/j.tifs.2013.04.001
[17]  AniesraniDelfiya, D.S., Thangavel, K., Natarajan, N., Kasthuri, R. and Kailappan, R. (2015) Microencapsulation of Turmeric Oleoresin by Spray Drying and in Vitro Release Studies of Microcapsules. Journal of Food Process Engineering, 38, 37-48.
https://doi.org/10.1111/jfpe.12124
[18]  Estevinho, B.N., Damas, A.M., Martins, P. and Rocha, F. (2014) Microencapsulation of β-Galactosidase with Different Biopolymers by a Spray-Drying Process. Food Research International, 64, 134-140.
https://doi.org/10.1016/j.foodres.2014.05.057
[19]  Rodklongtan, A., La-Ongkham, O., Nitisinprasert, S. and Chitprasert, P. (2014) Enhancement of Lactobacillus reuteri KUB-AC5 Survival in Broiler Gastrointestinal Tract by Microencapsulation with Alginate-Chitosan Semi-Interpenetrating Polymer Networks. Journal of Applied Microbiology, 117, 227-238.
https://doi.org/10.1111/jam.12517
[20]  Soottitantawat, A., Yoshii, H., Furuta, T., Ohkawara, M. and Linko, P. (2003) Microencapsulation by Spray Drying: Influence of Emulsion Size on the Retention of Volatile Compounds. Journal of Food Science, 68, 2256-2262.
https://doi.org/10.1111/j.1365-2621.2003.tb05756.x
[21]  Anbinder, P.S., Deladino, L., Navarro, A.S., Amalvy, J.I. and Martino, M.N. (2011) Yerba Mate Extract Encapsulation with Alginate and Chitosan Systems: Interactions between Active Compound Encapsulation Polymers. Journal of Encapsulation and Adsorption Sciences, 1, 80-87.
https://doi.org/10.4236/jeas.2011.14011
[22]  Soliman, E.A., El-Moghazy, A.Y., Mohy-El-Din, M.S. and Massoud, M.A. (2013) Microencapsulation of Essential Oils within Alginate: formulation and in Vitro Evaluation of Antifungal Activity. Journal of Encapsulation and Adsorption Sciences, 3, 48-55.
https://doi.org/10.4236/jeas.2013.31006
[23]  Paster, N., Menasherov, M., Ravid, U. and Juven, B. (1995) Antifungal Activity of Oregano and Thyme Essential Oils Applied as Fumigants against Fungi Attacking Stored Grain. Journal of Food Protection, 58, 81-85.
https://doi.org/10.4315/0362-028X-58.1.81
[24]  Ayala, J.F., Del Toro, L., Alvarez, E. and Gonzalez, G.A. (2008) High Relative Humidity In-Package of Fresh-Cut Fruits and Vegetables: Advantage or Disadvantage Considering Microbiological Problems and Antimicrobial Delivery Systems. Journal of Food Science, 4, 41-47.
https://doi.org/10.1111/j.1750-3841.2008.00705.x
[25]  Kailasapathy, K. (2002) Microencapsulation of Probiotic Bacteria: Technology and Potential Applications. Current Issues in Molecular Biology, 3, 39-48.
[26]  Kwak, H.-S. (2014) Nano- and Microencapsulation for Foods. Wiley, Hoboken.
https://doi.org/10.1002/9781118292327
[27]  Dolcà, C., Ferrándiz, M., Capablanca, L., Franco, E., Mira, E., López, F. and García, D. (2015) Microencapsulation of Rosemary Essential Oil by Co-Extrusion/Gelling Using Alginate as Wall Material. Journal of Encapsulation and Adsorption Sciences, 5, 121-130.
https://doi.org/10.4236/jeas.2015.53010
[28]  Monllor, P., Capablanca, L., Gisbert, J., Díaz, P., Montava, I and Bonet, A. (2010) Improvement of Microcapsule Adhesion to Fabrics. Textile Research Journal, 80, 631-635.
https://doi.org/10.1177/0040517509346444
[29]  Bhattarai, N., Gunn, J. and Zhang, M. (2010) Chitosan-Based Hydrogels for Controlled, Localized Drug Delivery. Advanced Drug Delivery Results, 62, 83-99.
https://doi.org/10.1016/j.addr.2009.07.019
[30]  Heinzelmann, K. and Franke, K. (1999) Using Freezing and Drying Techniques of Emulsions for Microencapsulation of Fish Oil to Improve Oxidation Stability. Colloids and Surfaces B: Biointerfaces, 12, 223-229.
https://doi.org/10.1016/S0927-7765(98)00077-0
[31]  Christensen, K., Pedersen, G. and Kristensen, H. (2001) Preparation of Redispersible Dry Emulsion by Spray Drying. International Journal of Pharmaceutics, 212, 187-194.
https://doi.org/10.1016/S0378-5173(00)00596-2
[32]  Sheu, T.Y. and Rosenberg, M. (1995) Microencapsulation by Spray Drying Ethyl Caprylate in Whey Protein and Carbohydrate Wall Systems. Journal of Food Science, 60, 98-103.
https://doi.org/10.1111/j.1365-2621.1995.tb05615.x
[33]  Desai, K.G.H and Jin, Park H. (2005) Recent Developments in Microencapsulation of Food Ingredients. Drying Technology, 23, 1361-1394.
https://doi.org/10.1081/DRT-200063478
[34]  Meunier, J.P. (2007) Use of Spray-Cooling Technology for Development of Microencapsulated Capsicum Oleoresin for the Growing Pig as an Alternative to In-Feed Antibiotics. A Study of Release Using in Vitro Models. Journal of Animals Science, 85, 2699-2710.
https://doi.org/10.2527/jas.2007-0027
[35]  Balassa, L.L., Fanger, G.O. and Wurzburg, O.B. (1971) Microencapsulation in the Food Industry. Critical Reviews in Food Science & Nutrition, 2, 245-265.
https://doi.org/10.1080/10408397109527123
[36]  Hernández, G. and Tisnado, R. (2012) Avances tecnológicos en la producción de alginatos en México. Ingeniería Investigación y Tecnología, 2, 155-168.
[37]  Ferrándiz, M., Capablanca, L., García, D., Bou, E. and Gutierrez, O. (2015) Estudio de la capacidad de desintegración de agrotextiles obtenidos a partir de fibras biodegradables. Revista de la Asociación Espanola de Químicos y Coloristas, 214, 12-19.
[38]  Feditchkina, E. (2014) The Promise of Biological Control for Sustainable Agriculture: A Stakeholder-Based Analysis. Journal of Science Policy & Governance, 5.
[39]  Nussinovitch, A. (2016) Encapsulation in Agriculture/Aquaculture. Bioencapsulation Research Group, Vol. 44, 1.
[40]  Chang, I., Im, J. and Chun, C.G. (2016) Introduction of Microbial Biopolymers in Soil Treatment for Future Environmentally-Friendly and Sustainable Geotechnical Engineering. Sustainability, 8, 251.
https://doi.org/10.3390/su8030251
[41]  Capablanca, L., Bonet, M., Bou, E., Ferrándiz, M., Franco, E. and Dolcà, C. (2014) Aplicación de técnicasbiotecnológicas y de microencapsulación para la funcionalización de agrotextiles. 2th Congreso de I+D+I Campus Alcoi: Creando Sinergias, Alcoi, 12 November 2014, 17-20.
[42]  Chan, E.S., Lee, B.B., Pogaku, R. and Poncelet, D. (2009) Prediction Models for Shape and Size of Ca-Alginate Macrobeads Produced through Extrusion-Dripping Method. Journal of Colloid and Interface Science, 338, 63-72.
https://doi.org/10.1016/j.jcis.2009.05.027
[43]  Hoffman, A. (2012) Hydrogels for Biomedical Applications. Advanced Drug Delivery Reviews, 64, 18-23.
https://doi.org/10.1016/j.addr.2012.09.010
[44]  Al-Sheibany, I.S., Kadhim, K.H. and Abdullah, A.S. (2005) Qualitative and Quantitative Evaluation of Some Organic Compounds in Iraqi Thyme. National Journal of Chemistry, 19, 366-379.
[45]  Kumar, S., Panner, R. and Sivakumar, T. (2010) Isolation, Characterisation and Formulation Properties of a New Plant Gum Obtained from Mangiferaindica. International Journal of Pharmaceutical and Biomedical Research, 1, 35-41.
[46]  Schulz, H., Ozkan, G. and Barkansa, M. (2005) Characterisation of Essential Oil Plants from Turkey by IR and Raman Spectroscopy. Vibrational Spectroscopy, 39, 249-256.
https://doi.org/10.1016/j.vibspec.2005.04.009
[47]  Lawrie, G., Keen, I., et al. (2007) Interactions between Alginate and Chitosan Biopolymers Characterized Using FTIR and XPS. Biomacromolecules, 8, 2533-2541.
https://doi.org/10.1021/bm070014y
[48]  Sivropoulou, A., Papanikolaou, E., Nikolaou, C. and Lanaras, T. (1996) Antimicrobial and Cytotoxic Activities of Origanum Essential Oils. Journal of Agricultural and Food Chemistry, 44, 1202-1205.
https://doi.org/10.1021/jf950540t
[49]  Mayur, G., Rajshree, C., Jolly, M. and Vijay, B. (2005) Papain Entrapment in Alginate Beads for Stability Improvement and Site-Specific Delivery: Physicochemical Characterization and Factorial Optimization Using Neural Network Modeling. AAPS PharmSciTechv, 6, 209-222.
https://doi.org/10.1208/pt060231
[50]  Goy, R.C. and Britto, D. (2009) A Review of the Antimicrobial Activity of Chitosan. Polímeros: Ciencia e Tecnologia, 19, 241-247.
https://doi.org/10.1590/S0104-14282009000300013

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133