全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effect of Substitution Degree and the Calcination Temperature on the N2O Decomposition over Zinc Cobaltite Catalysts

DOI: 10.4236/mrc.2017.61004, PP. 47-64

Keywords: Greenhouse Gases, Nitrous Oxide, N2O Decomposition, Znx-Co1-xCo2O4, Zinc Cobaltite, Spinel Oxide

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, a series of zinc cobaltite catalysts with the general formula Znx-Co1-xCo2O4 (x = 0.25, 0.50, 0.75 and 1.0) has been prepared using the co-precipitation method. Thermal analyzes (TGA and DTA) were used to follow up the thermal events accompanying the heat treatment of the parent mixture. Based on these results, the various parent mixtures were calcined at 500℃. The obtained solid catalysts were characterized by using XRD, FT-IR and N2-adsorption. The catalytic decomposition of N2O to N2 and O2 was carried out on the zinc-cobaltite catalysts. It was found that partial replacement of Co2+ by Zn2+ in Co3O4 spinel oxide led to a significant improvement in their N2O decomposition activity. Moreover, the catalytic activity was found to be depended on the calcination temperature utilized.

References

[1]  Pérez-Ramírez, J. (2007) Prospects of N2O Emission Regulations in the European Fertilizer Industry. Applied Catalysis B: Environmental, 70, 31-35.
https://doi.org/10.1016/j.apcatb.2005.11.019
[2]  Pérez-Ramírez, J., Kapteijn, F., Schoffel, K. and Moulijn, J.A. (2003) Formation and Control of N2O in Nitric Acid Production: Where Do We Stand Today? Applied Catalysis B: Environmental, 44, 117-151.
https://doi.org/10.1016/S0926-3373(03)00026-2
[3]  Konsolakis, M. (2015) Recent Advances on Nitrous Oxide (N2O) Decomposition over Non-Noble-Metal Oxide Catalysts: Catalytic Performance, Mechanistic Considerations, and Surface Chemistry Aspects. ACS Catalysis, 5, 6397-6421.
https://doi.org/10.1021/acscatal.5b01605
[4]  Abu-Zied, B.M. and Schwieger, W. (2009) Self Oscillatory Behaviour in N2O Decomposition over Co-ZSM-5 Catalysts. Applied Catalysis B: Environmental, 85, 120-130.
https://doi.org/10.1016/j.apcatb.2008.07.002
[5]  Shan, Y. and Gao, L. (2007) Formation and Characterization of Multi-Walled Carbon Nanotubes/Co3O4 Nanocomposites for Supercapacitors. Materials Chemistry and Physics, 103, 206-210.
https://doi.org/10.1016/j.matchemphys.2007.02.038
[6]  Kanazawa, E., Sakai, G., Shimanoe, K., Kanmura, Y., Teraoka, Y., Miura, N. and Yamazoe, N. (2001) Metal Oxide Semiconductor N2O Sensor for Medical Use. Sensors and Actuators B: Chemical, 77, 72-77.
https://doi.org/10.1016/S0925-4005(01)00675-X
[7]  Sharma, Y., Sharma, N., Rao, G.V.S. and Chowdari, B.V.R. (2008) Studies on Spinel Cobaltites, FeCo2O4 and MgCo2O4 as Anodes for Li-Ion Batteries. Solid State Ionics, 179, 587-597.
https://doi.org/10.1016/j.ssi.2008.04.007
[8]  Sharma, Y., Sharma, N., Rao, G.V.S. and Chowdari, B.V.R. (2007) Nanophase ZnCo2O4 as a High Performance Anode Material for Li-Ion Batteries. Advanced Functional Materials, 17, 2855-2861.
https://doi.org/10.1002/adfm.200600997
[9]  Sharma, Y., Sharma, N., Rao, G.V.S. and Chowdari, B.V.R. (2007) Lithium Recycling Behaviour of Nano-Phase-CuCo2O4 as Anode for Lithium-Ion Batteries. Journal of Power Sources, 173, 495-501.
https://doi.org/10.1016/j.jpowsour.2007.06.022
[10]  Liu, Y., Mi, C.H., Su, L. and Zhang, X. (2008) Hydrothermal Synthesis of Co3O4 Microspheres as Anode Material for Lithium-Ion Batteries. Electrochimica Acta, 53, 2507-2513.
https://doi.org/10.1016/j.electacta.2007.10.020
[11]  Lichtenberg, F. and Kleinsorgen, K. (1996) Stability Enhancement of the CoOOH Conductive Network of Nickel Hydroxide Electrodes. Journal of Power Sources, 62, 207-211.
https://doi.org/10.1016/S0378-7753(96)02431-7
[12]  Makhlouf, S.A. (2002) Magnetic Properties of Co3O4 Nanoparticles. Journal of Magnetism and Magnetic Materials, 246, 184-190.
https://doi.org/10.1016/S0304-8853(02)00050-1
[13]  Yamaura, H., Moriya, K., Miura, N. and Yamazoe, N. (2000) Mechanism of Sensitivity Promotion in CO Sensor Using Indium Oxide and Cobalt Oxide. Sensors and Actuators B, 65, 39-41.
https://doi.org/10.1016/S0925-4005(99)00456-6
[14]  Liu, J., Zhao, Z., Wang, J., Xu, C., Duan, A., Jiang, G. and Yang, Q. (2008) The Highly Active Catalysts of Nanometric CeO2-Supported Cobalt Oxides for Soot Combustion. Applied Catalysis B: Environmental, 84, 185-195.
https://doi.org/10.1016/j.apcatb.2008.03.017
[15]  Ulla, M.A., Spretz, R., Lombardo, E., Daniell, W. and Knozinger, H. (2000) Catalytic Combustion of Methane on Co/MgO: Characterisation of Active Cobalt Sites. Applied Catalysis B: Environmental, 29, 217-229.
https://doi.org/10.1016/S0926-3373(00)00204-6
[16]  Xiao, T.-C., Fuji, S., Wang, H.-T., Coleman, K.S. and Green, M.L.H. (2001) Methane Combustion over Supported Cobalt Catalysts. Journal of Molecular Catalysis A: Chemical, 175, 111-123.
https://doi.org/10.1016/S1381-1169(01)00205-9
[17]  Manova, E., Tsoncheva, T., Paneva, D., Mitov, I., Tenchev, K. and Petrov, L. (2004) Mechanochemically Synthesized Nano-Dimensional Iron-Cobalt Spinel Oxides as Catalysts for Methanol Decomposition. Applied Catalysis A: General, 277, 119-127.
https://doi.org/10.1016/j.apcata.2004.09.002
[18]  Manova, E., Tsoncheva, T., Estournès, Cl., Paneva, D., Tenchev, K., Mitov, I. and Petrov, L. (2006) Nanosized Iron and Iron-Cobalt Spinel Oxides as Catalysts for Methanol Decomposition. Applied Catalysis A: General, 300, 170-180.
https://doi.org/10.1016/j.apcata.2005.11.005
[19]  Zhou, L., Xu, J., Miao, H., Wang, F. and Li, X. (2005) Catalytic Oxidation of Cyclohexane to Cyclohexanol and Cyclohexanone over Co3O4 Nanocrystals with Molecular Oxygen. Applied Catalysis A: General, 292, 223-228.
https://doi.org/10.1016/j.apcata.2005.06.018
[20]  Liu, Q., Wang, L.-C., Chen, M., Cao, Y., He, H.-Y. and Fan, K.-N. (2009) Dry Citrate-Precursor Synthesized Nanocrystalline Cobalt Oxide as Highly Active Catalyst for Total Oxidation of Propane. Journal of Catalysis, 263, 104-113.
https://doi.org/10.1016/j.jcat.2009.01.018
[21]  Wang, Y.-Z., Zhao, Y.-X., Gao, C.-G. and Liu., D.-S. (2007) Preparation and Catalytic Performance of Co3O4 Catalysts for Low-Temperature CO Oxidation. Catalysis Letters, 116, 136-142.
https://doi.org/10.1007/s10562-007-9099-4
[22]  Lin, H.K., Chiu, H.C., Tsai, H.C., Chien, S.H. and Wang, C.B. (2003) Synthesis, Characterization and Catalytic Oxidation of Carbon Monoxide over Cobalt Oxide. Catalysis Letters, 88, 169-174.
https://doi.org/10.1023/A:1024013822986
[23]  Li, Y., Liu, W., Wu, M., Yi, Z. and Zhang, J. (2007) Oxidation of 2,3,5-Trimethylphenol to 2,3,5-Trimethylbenzoquinone with Aqueous Hydrogen Peroxide in the Presence of Spinel CuCo2O4. Journal of Molecular Catalysis A: Chemical, 261, 73-78.
https://doi.org/10.1016/j.molcata.2006.07.067
[24]  Russo, N., Fino, D., Saracco, G. and Specchia, V. (2007) N2O Catalytic Decomposition over Various Spinel-Type Oxides. Catalysis Today, 119, 228-232.
https://doi.org/10.1016/j.cattod.2006.08.012
[25]  Yan, L., Ren, T., Wang, X., Gao, Q., Ji, D. and Suo, J. (2003) Excellent Catalytic Performance of ZnxCo1-xCo2O4 Spinel Catalysts for the Decomposition of Nitrous Oxide. Catalysis Communications, 4, 505-509.
https://doi.org/10.1016/S1566-7367(03)00131-6
[26]  Yan, L., Ren, T., Wang, X., Ji, D. and Suo, J. (2003) Catalytic Decomposition of N2O over MxCo1-xCo2O4 (M = Ni, Mg) Spinel Oxides. Applied Catalysis B: Environmental, 45, 85-90.
https://doi.org/10.1016/S0926-3373(03)00174-7
[27]  Basahel, S.N., Abd El-Maksod, I.H., Abu-Zied, B.M. and Mokhtar, M. (2010) Effect of Zr4+ Doping on the Stabilization of ZnCo-Mixed Oxide Spinel System and Its Catalytic Activity towards N2O Decomposition, Journal of Alloys and Compounds. 493, 630-635.
https://doi.org/10.1016/j.jallcom.2009.12.169
[28]  Shen, Q., Li, L., Li, J., Tian, H. and Hao, Z. (2009) A Study on N2O Catalytic Decomposition over Co/MgO Catalysts. Journal of Hazardous Materials, 163, 1332- 1337.
https://doi.org/10.1016/j.jhazmat.2008.07.104
[29]  Abu-Zied, B.M. (2011) Nitrous Oxide Decomposition over Alkali-Promoted Magnesium Cobaltite Catalysts. Chinese Journal of Catalysis, 32, 264-272.
https://doi.org/10.1016/S1872-2067(10)60174-X
[30]  Abu-Zied, B.M. and Soliman, S.A. (2009) Nitrous Oxide Decomposition over MCO3-Co3O4 (M = Ca, Sr, Ba) Catalysts. Catalysis Letters, 132, 299-310.
https://doi.org/10.1007/s10562-009-0158-x
[31]  Abu-Zied, B.M., Soliman, S.A. and Abdellah, S.E. (2014) Pure and Ni-Substituted Co3O4 Spinel Catalysts for Direct N2O Decomposition. Chinese Journal of Catalysis, 35, 1105-1112.
https://doi.org/10.1016/S1872-2067(14)60058-9
[32]  Abu-Zied, B.M., Soliman, S.A. and Abdellah, S.E. (2015) Enhanced Direct N2O Decomposition Over CuxCo1–xCo2O4 (0.0 ≤ x ≤ 1.0) Spinel-Oxide Catalysts. Journal of Industrial and Engineering Chemistry, 21, 814-821.
https://doi.org/10.1016/j.jiec.2014.04.017
[33]  Obalová, L., Jirátová, K., Kovanda, F., Pacultová, K., Lacny, Z. and Mikulova, Z. (2005) Catalytic Decomposition of Nitrous Oxide over Catalysts Prepared from Co/Mg-Mn/Al Hydrotalcite-Like Compounds. Applied Catalysis B: Environmental, 60, 289-297. https://doi.org/10.1016/j.apcatb.2005.04.002
[34]  Karásková, K., Obalová, L. and Kovanda, F. (2011) N2O Catalytic Decomposition and Temperature Programmed Desorption Tests on Alkali Metals Promoted Co-Mn-Al Mixed Oxide. Catalysis Today, 176, 208-211.
https://doi.org/10.1016/j.cattod.2010.12.055
[35]  Xue, L., Zhang, C., He, H. and Teraoka, Y. (2007) Catalytic Decomposition of N2O over CeO2 Promoted Co3O4 Spinel Catalyst. Applied Catalysis B: Environmental, 75, 167-174.
https://doi.org/10.1016/j.apcatb.2007.04.013
[36]  Wilczkowska, E., Krawczyk, K., Petryk, J., Sobczak, J.W. and Kaszkur, Z. (2010) Direct Nitrous Oxide Decomposition with a Cobalt Oxide Catalyst. Applied Catalysis A: General, 389,165-172.
https://doi.org/10.1016/j.apcata.2010.09.016
[37]  Makhlouf, M.T., Abu-Zied, B.M. and Mansoure, T.H. (2013) Effect of Calcination Temperature on the H2O2 Decomposition Activity of Nano-Crystalline Co3O4 Prepared by Combustion Method. Applied Surface Science, 274, 45-52.
https://doi.org/10.1016/j.apsusc.2013.02.075
[38]  Makhlouf, M.T., Abu-Zied, B.M. and Mansoure, T.H. (2014) Effect of Fuel/Oxidizer Ratio and the Calcination Temperature on the Preparation of Microporous- Nanostructured Tricobalt Tetraoxide. Advanced Powder Technology, 25, 560-566.
https://doi.org/10.1016/j.apt.2013.09.003
[39]  Makhlouf, M.T., Abu-Zied, B.M. and Mansoure, T.H. (2013) Nanocrystalline Co3O4 Fabricated via the Combustion Method. Metals and Materials International, 19, 489-495.
https://doi.org/10.1007/s12540-013-3017-7
[40]  Makhlouf, M.T., Abu-Zied, B.M. and Mansoure, T.H. (2013) Direct Fabrication of Cobalt Oxide Nanoparticles Employing Sucrose as a Combustion Fuel. Journal of Nanoparticles, 2013, Article ID: 384350.
https://doi.org/10.1155/2013/384350
[41]  Makhlouf, M.T., Abu-Zied, B.M. and Mansoure, T.H. (2012) Direct Fabrication of Cobalt Oxide Nano-Particles Employing Glycine as a Combustion Fuel. Physical Chemistry, 2, 86-93.
https://doi.org/10.5923/j.pc.20120206.01
[42]  Wei, X., Chen, D. and Tang, W. (2007) Preparation and Characterization of the Spinel Oxide ZnCo2O4 Obtained by Sol-Gel Method. Materials Chemistry and Physics, 103, 54-58.
https://doi.org/10.1016/j.matchemphys.2007.01.006
[43]  Song, F., Huang, L., Chen, D. and Tang, W. (2008) Preparation and Characterization of Nanosized Zn-Co Spinel Oxide by Solid State Reaction Method. Materials Letters, 62, 543-547.
https://doi.org/10.1016/j.matlet.2007.06.015
[44]  Zhang, G.Y., Guo, B. and Chen, J. (2006) MCo2O4 (M = Ni, Cu, Zn) Nanotubes: Template Synthesis and Application in Gas Sensors. Sensors and Actuators B, 114, 402-409.
https://doi.org/10.1016/j.snb.2005.06.010
[45]  Niu, X., Du, W. and Du, W. (2004) Preparation and Gas Sensing Properties of ZnM2O4 (M = Fe, Co, Cr). Sensors and Actuators B, 99, 405-409.
https://doi.org/10.1016/j.snb.2003.12.007
[46]  Kim, H.J., Song, I.C., Sim, J.H., Kim, H., Kim, D., Ihm, Y.E. and Choo, W.K. (2004) Structural and Transport Properties of Cubic Spinel ZnCo2O4 Thin Films Grown by Reactive Magnetron Sputtering. Solid State Communications, 129, 627-630.
https://doi.org/10.1016/j.ssc.2003.12.025
[47]  Lefez, B., Nkeng, P., Lopitaux, J. and Poillerat, G. (1996) Characterization of Cobaltite Spinels by Reflectance Spectroscopy. Materials Research Bulletin, 31, 1263-1267.
https://doi.org/10.1016/0025-5408(96)00122-5
[48]  Kustova, G.N., Burgina, E.B., Volkova, G.G., Yurieva, T.M. and Plyasova, L.M. (2000) IR Spectroscopic Investigation of Cation Distribution in Zn-Co Oxide Catalysts with Spinel Type Structure. Journal of Molecular Catalysis A: Chemical, 158, 293-296. https://doi.org/10.1016/S1381-1169(00)00093-5
[49]  Guo, Q., Guo, X. and Tian, Q. (2010) Optionally Ultra-Fast Synthesis of CoO/Co3O4 Particles Using CoCl2 Solution via a Versatile Spray Roasting Method. Advanced Powder Technology, 21, 529-533.
https://doi.org/10.1016/j.apt.2010.02.003
[50]  Tang, C.-W., Wang, C.-B. and Chien, S.-H. (2008) Characterization of Cobalt Oxides Studied by FT-IR, Raman, TPR and TG-MS. Thermochimica Acta, 473, 68-73.
https://doi.org/10.1016/j.tca.2008.04.015
[51]  Abu-Zied, B.M. (2008) Oxygen Evolution over Ag/FexAl2-xO3 (0.0 ≤ x ≤ 2.0) Catalysts via N2O and H2O2 Decomposition. Applied Catalysis A: General, 334, 234-242.
https://doi.org/10.1016/j.apcata.2007.10.013

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133