A novel complex nano-structured Au@TiO2 gold catalyst has been prepared. Au precursor could be transformed into Au@TiO2/MCM-22 with the complex nano-structured using two different methods. Samples were characterized by XRD, FT-IR, UV-vis, TEM, ICP-AES and N2 adsorption-desorption. It is found that gold was anchored on the TiO2/MCM-22 as small size and uniform particles with the average diameters in the range of 5 - 9 nm. Catalytic results show that such nano-gold catalysts display excellent catalytic performance for cyclohexane oxidation. Au@TiO2/MCM-22 catalyst with the gold content of 0.5 wt% exhibits extremely exceptionally catalytic activity (12.81%) and high turnover frequency (52,121 h-1), which may be ascribed to the synergistic effects of Au and TiO2 in the complex nano-structured catalyst Au@TiO2/ MCM-22. Because of the strong metal support interaction, aggregation of active sites (Au nanoparticles) during the oxidation reaction is effectively prohibited and the catalytic activity is essentially retained.
References
[1]
Zhang, L., Blom, D.A. and Wang, H. (2011) Au-Cu2O Core-Shell Nanoparticles: A Hybrid Metal-Semiconductor Heteronanostructure with Geometrically Tunable Optical Properties. Chemistry of Materials, 23, 4587-4598. https://doi.org/10.1021/cm202078t
[2]
Goodman, D.W. (2005) “Catalytically Active Au on Titania:” Yet Another Example of a Strong Metal Support Interaction (SMSI)? Catalysis Letters, 99, 1-4. https://doi.org/10.1007/s10562-004-0768-2
[3]
Costi, R., Saunders, A.E. and Banin, U. (2010) Colloidal Hybrid Nanostructures: A New Type of Functional Materials. Angewandte Chemie International Edition, 49, 4878-4897. https://doi.org/10.1002/anie.200906010
[4]
Cortie, M.B. and McDonagh, A.M. (2011) Synthesis and Optical Properties of Hybrid and Alloy Plasmonic Nanoparticles. Chemical Reviews, 111, 3713-3735. https://doi.org/10.1021/cr1002529
[5]
Carbone, L. and Cozzoli, P.D. (2010) Colloidal Heterostructured Nanocrystals: Synthesis and Growth Mechanisms. Nano Today, 5, 449-493. https://doi.org/10.1016/j.nantod.2010.08.006
[6]
Fu, Q. and Wagner, T. (2007) Interaction of Nanostructured Metal Overlayers with Oxide Surfaces. Surface Science Reports, 62, 431-498. https://doi.org/10.1016/j.surfrep.2007.07.001
[7]
Maier, J. (2005) Nanoionics: Ion Transport and Electrochemical Storage in Confined Systems. Nature Materials, 4, 805-815. https://doi.org/10.1038/nmat1513
[8]
Diebold, U. (2003) The Surface Science of Titanium Dioxide. Surface Science Reports, 48, 53-229. https://doi.org/10.1016/S0167-5729(02)00100-0
[9]
Hojrup-Hansen, K., Ferrero, S. and Henry, C.R. (2004) Nucleation and Growth Kinetics of Gold Nanoparticles on MgO (1 0 0) Studied by UHV-AFM. Applied Surface Science, 226, 167-172. https://doi.org/10.1016/j.apsusc.2003.11.017
[10]
Al-Abadleh, H.A. and Grassian, V.H. (2003) Oxide Surfaces as Environmental Interfaces. Surface Science Reports, 52, 63-161. https://doi.org/10.1016/j.surfrep.2003.09.001
[11]
Chen, S. and Nickel, U. (1996) Synthesis of Hybrid Metal-Semiconductor Ultrafine Particles. Photochemical Deposition of Silver on a ZnO Colloid Surface. Journal of the Chemical Society, Faraday Transactions, 92, 1555-1562. https://doi.org/10.1039/FT9969201555
[12]
Christy, A.J. and Umadevi, M. (2012) Synthesis and Characterization of Monodispersed Silver Nanoparticles. Advances in Natural Sciences: Nanoscience and Nanotechnology, 3, Article ID: 035013.
[13]
Tauster, S.J., Fung, S.C. and Garten, R.L. (1978) Strong Metal-Support Interactions. Group 8 Noble Metals Supported on Titanium Dioxide. Journal of the American Chemical Society, 100, 170-175. https://doi.org/10.1021/ja00469a029
[14]
Tauster, S.J., Fung, S.C., Baker, R.T.K. and Horsley, J.A. (1981) Strong Interactions in Supported-Metal Catalysts. Science, 211, 1121-1125. https://doi.org/10.1126/science.211.4487.1121
[15]
Li, Y.Z., Fan, Y.N., Yang, H.P., Xu, B.L., Feng, L.X., Yang, M.F. and Chen, Y. (2003) Strong Metal-Support Interaction and Catalytic Properties of Anatase and Rutile Supported Palladium Catalyst Pd/TiO2. Chemical Physics Letters, 372, 160-165. https://doi.org/10.1016/S0009-2614(03)00383-X
[16]
Weerachawanasak, P., Praserthdam, P., Arai, M. and Panpranot, J. (2008) A Comparative Study of Strong Metal-Support Interaction and Catalytic Behavior of Pd Catalysts Supported on Micron- and Nano-Sized TiO2 in Liquid-Phase Selective Hydrogenation of Phenylacetylene. Journal of Molecular Catalysis A: Chemical, 279, 133-139. https://doi.org/10.1016/j.molcata.2007.10.006
[17]
Vayenas, C.G., Brosda, S. and Pliangos, C. (2003) The Double-Layer Approach to Promotion, Electrocatalysis, Electrochemical Promotion, and Metal-Support Interactions. Journal of Catalysis, 216, 487-504. https://doi.org/10.1016/S0021-9517(02)00127-6
[18]
Fu, Q., Wagner, T., Olliges, S. and Carstanjen, H.-D. (2005) Metal-Oxide Interfacial Reactions: Encapsulation of Pd on TiO2 (110). The Journal of Physical Chemistry B, 109, 944-951. https://doi.org/10.1021/jp046091u
[19]
Schuchardt, U., Cardoso, D., Sercheli, R., Pereira, R., de Cruz, R.S., Guerreiro, M.C., Mandelli, D., Spinace, E.V. and Fires, E.L. (2001) Cyclohexane Oxidation Continues to Be a Challenge. Applied Catalysis A: General, 211, 1-17. https://doi.org/10.1016/S0926-860X(01)00472-0
[20]
Weissermel, K. and Arpe, H.-J. (2003) Industrial Organic Chemistry. 4th Edition, Wiley-VCH, Weinheim. https://doi.org/10.1002/9783527619191
[21]
Xu, L.X., He, C.H., Zhu, M.Q. and Fang, S. (2007) A Highly Active Au/Al2O3 Catalyst for Cyclohexane Oxidation Using Molecular Oxygen. Catalysis Letters, 114, 202-205. https://doi.org/10.1007/s10562-007-9058-0
[22]
Xu, L.X., He, C.H., Zhu, M.Q., Wu, K.J. and Lai, Y.L. (2007) Silica-Supported Gold Catalyst Modified by Doping with Titania for Cyclohexane Oxidation. Catalysis Le- tters, 118, 248-253. https://doi.org/10.1007/s10562-007-9178-6
[23]
Xu, L.X., He, C.H., Zhu, M.Q., Wu, K.J. and Lai, Y.L. (2008) Surface Stabilization of Gold by Sol-Gel Post-Modification of Alumina Support with Silica for Cyclohexane Oxidation. Catalysis Communications, 9, 816-820. https://doi.org/10.1016/j.catcom.2007.09.005
[24]
Wu, Y.J., Ren, X.Q., Lu, Y.D. and Wang, J. (2008) Rapid Synthesis of Zeolite MCM-22 by Acid-Catalyzed Hydrolysis of Tetraethylorthosilicate. Materials Letters, 62, 317-319. https://doi.org/10.1016/j.matlet.2007.05.026
[25]
Pan, X.Y. and Xu, Y.-J. (2013) Fast and Spontaneous Reduction of Gold Ions over Oxygen-Vacancy-Rich TiO2: A Novel Strategy to Design Defect-Based Composite Photocatalyst. Applied Catalysis A: General, 459, 34-40. https://doi.org/10.1016/j.apcata.2013.04.007
[26]
Li, L., Jin, C., Wang, X.C., Ji, W.J., Pan, Y., van der Knaap, T., van der Stoel, R. and Au, C.T. (2009) Cyclohexane Oxidation over Size-Uniform Au Nanoparticles (SBA-15 Hosted) in a Continuously Stirred Tank Reactor Under Mild Conditions. Catalysis Letters, 129, 303-311. https://doi.org/10.1007/s10562-009-9853-x
[27]
Yan, W.F., Chen, B., Mahurin, S.M., Schwartz, V., Mullins, D.R., Lupini, A.R., Pennycook, S.J., Dai, S. and Overbury, S.H. (2005) Prep-aration and Comparison of Supported Gold Nanocatalysts on Anatase, Brookite, Rutile, and P25 Polymorphs of TiO2 for Catalytic Oxidation of CO. The Journal of Physical Chemistry B, 109, 10676-10685. https://doi.org/10.1021/jp044091o
[28]
Ismail, A.A., Hakki, A. and Bahnemann, D.W. (2012) Mesostructure Au/TiO2 Nanocomposites for Highly Efficient Catalytic Reduction of p-Nitrophenol. Journal of Molecular Catalysis A: Chemical, 358, 145-151. https://doi.org/10.1016/j.molcata.2012.03.009
[29]
Zhou, J.C., Yang, X.F., Wang, Y.Q. and Chen, W.J. (2014) An Efficient Oxidation of Cyclohexane over Au TiO2/MCM-41 Catalyst Prepared by Photocatalytic Reduction Method Using Molecular Oxygen as Oxidant. Catalysis Communications, 46, 228-233. https://doi.org/10.1016/j.catcom.2013.12.026
[30]
Izutsu, H., Nair, P.K., Maeda, K., Kiyozumi, Y. and Mizukami, F. (1997) Structure and Properties of TiO2-SiO2 Prepared by Sol-Gel Method in the Presence of Tartaric Acid. Materials Research Bulletin, 32, 1303-1311. https://doi.org/10.1016/S0025-5408(97)00106-2
[31]
Thangaraj, A., Kumar, R., Mirajkar, S.P. and Ratnasamy, P. (1991) Catalytic Properties of Crystalline Titanium Silicalites I. Synthesis and Characterization of Titanium-Rich Zeolites with MFI Structure. Journal of Catalysis, 130, 1-8. https://doi.org/10.1016/0021-9517(91)90086-J
[32]
Tuel, A. (1996) Crystallization of Titanium Silicalite-1 (TS-1) from Gels Containing Hexanediamine and Tetrapropylammonium Bromide. Zeolites, 16, 108-117. https://doi.org/10.1016/0144-2449(95)00109-3
[33]
Daniel, M.-C. and Astruc, D. (2004) Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chemical Reviews, 104, 293-346. https://doi.org/10.1021/cr030698+
[34]
Wu, P.P., Bai, P., Lei, Z.B., Loh, K.P. and Zhao, X.S. (2011) Gold Nanoparticles Supported on Functionalized Mesoporous Silica for Selective Oxidation of Cyclohexane. Microporous and Mesoporous Materials, 141, 222-230. https://doi.org/10.1016/j.micromeso.2010.11.011
[35]
Wu, P.P., Bai, P., Loh, K.P. and Zhao, X.S. (2010) Au Nanoparticles Dispersed on Functionalized Mesoporous Silica for Selective Oxidation of Cyclohexane. Catalysis Today, 158, 220-227. https://doi.org/10.1016/j.cattod.2010.03.027
[36]
Fang, J., Cao, S.-W., Wang, Z., Mehdi Shahjamali, M., Loo, S.C.J., Barber, J. and Xue, C. (2012) Mesoporous Plasmonic Au-TiO2 Nanocomposites for Efficient Visible-Light-Driven Photocatalytic Water Reduction. International Journal of Hydrogen Energy, 37, 17853-17861. https://doi.org/10.1016/j.ijhydene.2012.09.023
[37]
Zhong, Z.Y., Patskovskyy, S., Bouvrette, P., Luong, J.H.T. and Gedanken, A. (2004) The Surface Chemistry of Au Colloids and Their Interactions with Functional Amino Acids. The Journal of Physical Chemistry B, 108, 4046-4052. https://doi.org/10.1021/jp037056a
[38]
Wang, M., Zhou, J.C., Mao, G.Y. and Zheng, X.L. (2012) Synthesis of TS-1 from an Inorganic Reactant System and Its Catalytic Properties for Allyl Chloride Epoxidation. Industrial & Engineering Chemistry Research, 51, 12730-12738. https://doi.org/10.1021/ie202524t
[39]
Zhao, R., Ji, D., Lv, G.M., Qian, G., Yan, L., Wang, X.L. and Suo, J.S. (2004) A Highly Efficient Oxidation of Cyclohexane over Au/ZSM-5 Molecular Sieve Catalyst with Oxygen as Oxidant. Chemical Communications, 10, 904-905. https://doi.org/10.1039/b315098d
[40]
Lü, G.M., Zhao, R., Qian, G., Qi, Y.X., Wang, X.L. and Suo, J.S. (2004) A Highly Efficient Catalyst Au/MCM-41 for Selective Oxidation Cyclohexane Using Oxygen. Catalysis Letters, 97, 115-118. https://doi.org/10.1023/B:CATL.0000038571.97121.b7
[41]
Laursen, S. and Linic, S. (2009) Strong Chemical Interactions between Au and Off-Stoichiometric Defects on TiO2 as a Possible Source of Chemical Activity of Nanosized Au Supported on the Oxide. The Journal of Physical Chemistry C, 113, 6689- 6693. https://doi.org/10.1021/jp810603u
[42]
Widmann, D., Liu, Y., Schüth, F. and Behm, R.J. (2010) Support Effects in the Au-Catalyzed CO Oxidation-Correlation between Activity, Oxygen Storage Capacity, and Support Reducibility. Journal of Catalysis, 276, 292-305. https://doi.org/10.1016/j.jcat.2010.09.023
[43]
Tan, H.T., Chen, Y.T., Zhou, C.M., Jia, X.L., Chen, J., Rui, X.H., Yan, Q.Y. and Yang, Y.H. (2012) Palladium Nanoparticles Supported on Manganese Oxide-CNT Composites for Solvent-Free Aerobic Oxidation of Alcohols: Tuning the Properties of Pd Active Sites Using MnOx. Applied Catalysis B: Environmental, 119-120, 166- 174. https://doi.org/10.1016/j.apcatb.2012.02.024