The principle of habitable
planets creation of near stars in our galaxy was developed. It was shown that
the Earth and the Moon formed as a result of thermal nuclear explosion (TNE) after a collision with a small comet.
The comet has broken through the proto-Earth crust, and created
conditions for liquid-drop division into the Earth and the Moon. It is shown
that the comet impact on the proto-Earth led to formation of continents as well as to formation
of the Moon, seas, oceans and atmosphere and to creation of conditions for life
origin. The analysis of kimberlitic pipes distribution, as markers of comet
fragments motion under a crust, shows that the comet has broken up under crust
with formation of many gas bubbles. An analysis of the Martian topography revealed
that the comet hit Mars not under a glancing angle. As a result, the products of TNE remained under the Marian
crust. The track of the comet movement under the Venus crust was also established.
It is shown that the planet surface near comet track is spotted by numerous
cracks.
References
[1]
Hartmann, W.K. Ed. (1986) Origin of the Moon. Lunar and Planetary Institute, Houston, Texas.
[2]
Benz, W., Slattery, W.L. and Cameron, A.G.W. (1986) The Origin of the Moon and the Single-Impact I. ICARUS, 66, 515-535. https://doi.org/10.1016/0019-1035(86)90088-6
[3]
Benz, W., Slattery, W.L. and Cameron, A.G.W. (1987) The Origin of the Moon and the Single-Impact Hypothesis II. ICARUS, 71, 30-45. https://doi.org/10.1016/0019-1035(87)90160-6
[4]
Benz, W., Cameron, A.G.W. and Melosh, H.J. (1989) The Origin of the Moon and the Single-Impact Hypothesis III. ICARUS, 81, 113-131. https://doi.org/10.1016/0019-1035(89)90129-2
[5]
Cameron, A.G.W. and Benz, W. (1991) The Origin of the Moon and the Single Impact Hypothesis IV. ICARUS, 92, 204-216. https://doi.org/10.1016/0019-1035(91)90046-V
[6]
Cameron, A.G.W. (1997) The Origin of the Moon and the Single Impact Hypothesis V. ICARUS, 126, 126-137. https://doi.org/10.1006/icar.1996.5642
[7]
Voronin, D.V. (2011) Computer Modeling of Planet Partial Fragmentation. WSEAS Transactions on Fluid Mechanics, 1, 32-50.
[8]
de Meijer, R.J., Anisichkin, V.F. and van Westrenen, W. (2013) Forming the Moon from Terrestrial Silicate-Rich Material. Chemical Geology, 345, 40-49. https://doi.org/10.1016/j.chemgeo.2012.12.015
[9]
Darwin, G.H. (1879) On the Bodily Tides of Viscous and Semi-Elastic Spheroids, and on the Ocean Tides upon a Yielding Nucleus. Philosophical Transactions of the Royal Society of London, 170, 1-35. https://doi.org/10.1098/rstl.1879.0061
[10]
Jeffreys, H. (1930) Amplitude of Tidal Resonances. Monthly Notices of the Royal Astronomical Society, 91, 169-173. https://doi.org/10.1093/mnras/91.1.169
[11]
Ringwood, A.E. (1960) Some Aspects of the Thermal Evolution of the Earth. Geochimica et Cosmochimica Acta, 20, 241-249. https://doi.org/10.1016/0016-7037(60)90076-4
[12]
Ringwood, A.E. (1986) Composition and Origin of the Moon. In: Hartmann, W.K., Ed., Origin of the Moon, Lunar and Planetary Institute, Houston, Texas, 673-698.
[13]
Wise, D.U. (1969) Origin of the Moon from the Earth: Some New Mechanisms and Comparisons. Journal of Geophysical Research: Planets, 74, 6034-6045. https://doi.org/10.1029/JB074i025p06034
[14]
Hartmann, W.K. and Davis, D.R. (1975) Satellite-Sized Planetesimals and Lunar Origin. ICARUS, 24, 504-514. https://doi.org/10.1016/0019-1035(75)90070-6
[15]
Cameron, A.G.W. and Ward, W.R. (1976) The Origin of the Moon. Lunar and Planetary Science Conference, Houston, Texas, 15-19 March 1976, 120-122.
[16]
Clayton, R.N. and Mayeda, T.K. (1996) Oxygen Isotopic Studies of Achondrites. Geochimica et Cosmochimica Acta, 60, 1999-2017. https://doi.org/10.1016/0016-7037(96)00074-9
[17]
Wiechert, U., Halliday, A.N., Lee, D.C., Snyder, G.A., Taylor, L.A. and Rumble, D. (2001) Oxygen Isotopes and the Moon-Forming Giant Impact. Science, 294, 345-348. https://doi.org/10.1126/science.1063037
[18]
Shukolyukov, A. and Lugmair, G.W. (2000) On the 53Mn Heterogeneity in the Early Solar System. Space Science Reviews, 92, 225-236. https://doi.org/10.1023/A:1005243228503
[19]
Trinquier, A., Birck, J.L., Allegre, C.J., Gopel, C. and Ulfbeck, D. (2008) 53Mn-53Cr Systematics of the Early Solar System Revisited. Geochimica et Cosmochimica Acta, 72, 5146-5163. https://doi.org/10.1016/j.gca.2008.03.023
[20]
Leya, I., Schonbachler, M., Wiechert, U., Krahenbuhl, U. and Halliday, A.N. (2008) Titanium Isotopes and the Radial Heterogeneity of the Solar System. Earth and Planetary Science Letters, 266, 233-244. https://doi.org/10.1016/j.epsl.2007.10.017
[21]
Zhang, J., Dauphas, N., Davis, A.M., Leya, I. and Fedkin, A. (2012) The Proto-Earth as a Significant Source of Lunar Material. Nature Geoscience, 5, 251-255. https://doi.org/10.1038/ngeo1429
[22]
Humayun, M. and Clayton, R.N. (1995) Potassium Isotope Cosmochemistry: Genetic Implications of Volatile Element Depletion. Geochimica et Cosmochimica Acta, 59, 2131-2148. https://doi.org/10.1016/0016-7037(95)00132-8
[23]
Georg, R.B., Halliday, A.N., Schauble, E.A. and Reynolds, B.C. (2007) Silicon in the Earth’s Core. Nature, 447, 1102-1106. https://doi.org/10.1038/nature05927
[24]
Savage, P.S., Georg, R.B., Armytage, R.M.G., Williams, H.M. and Halliday, A.N. (2010) Silicon Isotope Homogeneity in the Mantle. Earth and Planetary Science Letters, 295, 139-146. https://doi.org/10.1016/j.epsl.2010.03.035
[25]
Armytage, R.M.G., Georg, R.B., Savage, P.S., Williams, H.M. and Halliday, A.N. (2011) Silicon Isotopes in Meteorites and Planetary Core Formation. Geochimica et Cosmochimica Acta, 75, 3662-3676. https://doi.org/10.1016/j.gca.2011.03.044
[26]
Fitoussi, C. and Bourdon, B. (2012) Silicon Isotope Evidence against an Enstatite Chondrite Earth. Science, 335, 1477-1480. https://doi.org/10.1126/science.1219509
[27]
Galimov, E.M. and Krivtsov, A.M. (2005) Origin of the Earth-Moon System. Journal of Earth Systems Science, 114, 593-600. https://doi.org/10.1007/BF02715942
[28]
Whiston, W. (1696) A New Theory of the Earth from Its Original to the Consummation of All Things. R. Roberts for Benjamin Tooke, London.
[29]
ArcInfo and ArcGlobe. http://www.esri.com/software/arcgis/arcinfo/index.html
[30]
Software GPlates v1.5. http://www.gplates.org
[31]
Boyden, J.A., Müller, R.D., Gurnis, M., Torsvik, T.H., Clark, J.A., Turner, M., Ivey-Law, H., Watson, R.J. and Cannon, J.S. (2011) Next-Generation Plate-Tectonic Reconstructions Using GPlates. In: Keller, G.R. and Baru, C., Eds., Geoinformatics: Cyber Infrastructure for the Solid Earth Sciences, Cambridge University Press, Cambridge, UK, 95-114. https://doi.org/10.1017/cbo9780511976308.008
[32]
Williams, S., Müller, R.D., Landgrebe, T.C.W. and Whittaker, J.M. (2012) An Open-Source Software Environment for Visualizing and Refining Plate Tectonic Reconstructions Using High Resolution Geological and Geophysical Data Sets. GSA Today, 22, 4-9.
[33]
Gurnis, M., Turner, M., Zahirovic, S., DiCaprio, L., Spasojevich, S., Müller, R.D., Boyden, J., Seton, M., Manea, V.C. and Bower, D. (2012) Plate Reconstructions with Continuously Closing Plates. Computers and Geosciences, 38, 35-42. https://doi.org/10.1016/j.cageo.2011.04.014
[34]
Qin, X., Muller, R.D., Cannon, J., Landgrebe, T.C.W., Heine, C., Watson, R.J. and Turner, M. (2012) Information Model and Markup Language. Geoscientific Instrumentation, Methods and Data Systems, 1, 111-134.
[35]
Gilmore, E., Gleditsch, N.P., Lujala, P. and RØd, J.K. (2005) Conflict Diamonds: A New Dataset. Conflict Management and Peace Science, 22, 257-292. https://doi.org/10.1080/07388940500201003
[36]
Päivi, L., Gleditsch, N.P. and Gilmore, E. (2005) A Diamond Curse? Civil War and a Lootable Resource. Journal of Conflict Resolution, 49, 538-562. https://doi.org/10.1177/0022002705277548
[37]
Gilmore, E., Lujala, P., Gleditsch, N.P. and RØd, J.K. (2015) Datasets Online. Diamond Resources. http://www.prio.no/Data/Geographical-and-Resource-Datasets/Dia mond-Resources/
[38]
Archinal, B.A., Rosiek, M.R., Kirk, R.L. and Redding, B.L. (2006) Datasets and Description. “The Unified Lunar Control Network 2005”. http://pubs.usgs.gov/of/2006/1367/ULCN2005-OpenFile.pdf
[39]
Davies, M.E., Colvin, T.R., Meyer, D.L. and Nelson, S. (1994) The Unified Lunar Control Network. JGR, 99, 23211-23214.
[40]
Eliason, E.M., McEwen, A.S., Robinson, M.S., Lee, E.M., Becker, T., Gaddis, L., Weller, L.A., Isbell, C.E., Shinaman, J.R., Duxbury, T. and Malaret, E. (1999) Digital Processing for a Global Multispectral Map of the Moon from the Clementine UVVIS Imaging Instrument. Lunar and Planetary Science XXX, Lunar and Planetary Institute, Houston, Abstract No. 1933. http://www.lpi.usra.edu/meetings/LPSC99/pdf/1933.pdf
[41]
Eliason, E.M., Lee, E.M., Becker, T.L., Weller, L.A., Isbell, C.E., Staid, M.I., Gaddis, L.R., McEwen, A.S., Robinson, M.S., Duxbury, T., Steutel, D., Blewett, D.T. and Lucey, P.G. Eds. (2003) A Near-Infrared (NIR) Global Multispectral Map of the Moon from Clementine. Lunar and Planetary Institute, Houston. http://www.lpi.usra.edu/meetings/lpsc2003/pdf/2093.pdf
[42]
Hare, T.M., Archinal, B.A., Becker, T.L., Lee, E.M., Gaddis, L.R., Redding, B.L. and Rosiek, M.R. (2008) Clementine Mosaics Warped to ULCN 2005 Network. Lunar and Planetary Science XXXIX (2008), Lunar and Planetary Institute, Houston, Abstract No. 2337. http://www.lpi.usra.edu/meetings/lpsc2008/pdf/2337.pdf
[43]
Archinal, B.A., Rosiek, M.R., Kirk, R.L. and Redding, B.L. (2006) The Unified Lunar Control Network 2005. http://pubs.usgs.gov/of/2006/1367/ULCN2005-OpenFile.pdf
[44]
Dataset: Global GIS Lunar (2010). ftp://pdsimage2.wr.usgs.gov/pub/pigpen/moon/Global_GIS_Lunar/ LunarGISDVD_v07.zip
[45]
Araki, H., Tazawa, S., Noda, H., Ishihara, Y., Goossens, S., Sasaki, S., Kawano, N., Kamiya, I., Otake, H., Oberst, J. and Shum, C. (2009) Lunar Global Shape and Polar Topography Derived from Kaguya-LALT Laser Altimetry. Science, 323, 897-900. https://doi.org/10.1126/science.1164146
Feldman, W.C., Barraclough, B.L., Fuller, K.R., Lawrence, D.J., Maurice, S., Miller, M.C., Prettyman, T.H. and Binder, A.B. (1999) The Lunar Prospector Gamma-Ray and Neutron Spectrometers. Nuclear Instruments and Methods in Physics Research A, 422, 562-566. https://doi.org/10.1016/S0168-9002(98)00934-6
[49]
Lawrence, D.J., Elphic, R.C., Feldman, W.C., Gasnault, O., Genetay, I., Maurice, S. and Prettyman, T.H. (2002) Optimizing the Spatial Resolution for Gamma-Ray Measurements of Thorium Abundances on the Lunar Surface. New Views of the Moon, Europe, 12-14 January 2002.
[50]
Lawrence, D.J., Elphic, R.C., Feldman, W.C., Gasnault, O., Genetay, I., Maurice, S. and Prettyman, T.H. (2002) Small-Area Thorium Enhancements on the Lunar Surface. 33rd Lunar and Planetary Science Conference, League City, Texas, 11-15 March 2002, Abstract #1970.
[51]
Elphic, R.C., Lawrence, D.J., Feldman, W.C., Barraclough, B.L., Maurice, S., Binder, A.B. and Lucey, P.G. (2000) Determination of Lunar Global Rare Earth Element Abundances Using Lunar Prospector Neutron Spectrometer Observations. Journal of Geophysical Research, 105, 333-320, 346.
[52]
Zuber, M.T., Smith, D.E., Lemoine, F.G. and Neumann, G.A. (1994) The Shape and Internal Structure of the Moon from the Clementine Mission. Science, 266, 1839-1843, https://doi.org/10.1126/science.266.5192.1839
[53]
Smith, D.E., Zuber, M.T., Neumann, G.A. and Lemoine, F.G. (1997) Topography of the Moon from the Clementine Lidar. Journal of Geophysical Research: Planets, 102, 1591-1611. https://doi.org/10.1029/96JE02940
[54]
Lemoine, F.G.R., Smith, D.E., Zuber, M.T., Neumann, G.A. and Rowlands, D.D. (1997) A 70th Degree Lunar Gravity Model (GLGM-2) from Clementine and Other Tracking Data. Journal of Geophysical Research: Planets, 102, 16339-16359. https://doi.org/10.1029/97JE01418
[55]
Datasets: Global GIS Mars. ftp://pdsimage2.wr.usgs.gov/pub/pigpen/mars/Global_GIS_Mars/
[56]
Zuber, M.T., Smith, D.E., Phillips, R.J., Solomon, S.C., Banerdt, W.B., Neumann, G.A. and Aharonson, O. (1998) Shape of the Northern Hemisphere of Mars from the Mars Orbiter Laser Altimeter (MOLA). Geophysical Research Letters, 25, 4393-4396. https://doi.org/10.1029/1998GL900129
[57]
Smith, D.E., Zuber, M.T., Frey, H.V., Garvin, J.B., Head, J.W., Muhleman, D.O., Pettengill, G.H., Phillips, R.J., Solomon, S.C., Zwally, H.J., Banerdt, W.B. and Duxbury, T.C. (1998) Topography of the Northern Hemisphere of Mars from the Mars Orbiter Laser Altimeter. Science, 279, 1686-1692. https://doi.org/10.1126/science.279.5357.1686
Ford, P.G. and Pettengill, G.H. (1992) Venus Topography and Kilometer-Scale Slopes. Journal of Geophysical Research, 97, 13103-13114. https://doi.org/10.1029/92je01085
[63]
Ivanova, M.A., Head, J.W. and Basilevskya, A.T. (2015) History of the Long Wavelength Topography of Venus. Solar System Research, 49, 1-11. https://doi.org/10.1134/S0038094615010025
[64]
Meyer, F.J. and Sandwell, D.T. (2012) SAR Interferometry at Venus for Topography and Change Detection. Planetary and Space Science, 73, 130-144. https://doi.org/10.1016/j.pss.2012.10.006
[65]
Barker, J.L. and Anders, E. (1968) Accretion Rate of Cosmic Matter from Iridium and Osmium Contents of Deepsea Sediments. Geochimica et Cosmochimica Acta, 32, 627-645. https://doi.org/10.1016/0016-7037(68)90053-7
[66]
Ceplecha, Z. (1992) Influx of Interplanetary Bodies onto Earth. Astronomy and Astrophysics, 263, 361-366.
[67]
Ceplecha, Z. (1996) Luminous Efficiency Based on Photographic Observations of the Lost-City Fireball and Implications for the Influx of Interplanetary Bodies onto Earth. Astronomy and Astrophysics, 311, 329-332.
[68]
Wegener, A. (1915) The Origin of Continents and Oceans. Dover Publications, New York.
[69]
Smith, A.G. and Hallam, A. (1970) The Fit of the Southern Continents. Nature, 225, 139-144. https://doi.org/10.1038/225139a0
[70]
Smith, A.G. and Briden, J.C. (1977) Mesozoic and Cenozoic Paleocontinental Maps. Cambridge University Press, Cambridge, UK.
[71]
Scotese, C.R., Gahagan, L.M. and Larson, R.L. (1988) Plate Tectonic Reconstructions of the Cretaceous and Cenozoic Ocean Basins. Tectonophysics, 155, 27-48. https://doi.org/10.1016/0040-1951(88)90259-4
Golonka, J. and Ford, D. (2000) Pangean (Late Carboniferous-Middle Jurassic) Paleoenvironment and Lithofacies. Palaeogeography, Palaeoclimatology, Palaeoecology, 161, 1-34. https://doi.org/10.1016/S0031-0182(00)00115-2
[74]
Golonka, J. (2007) Late Triassic and Early Jurassic Palaeogeography of the World. Palaeogeography, Palaeoclimatology, Palaeoecology, 244, 297-307. https://doi.org/10.1016/j.palaeo.2006.06.041
[75]
Schettino, A. and Turco, E. (2009) Breakup of Pangaea and Plate Kinematics of the Central Atlantic and Atlas Regions. Geophysical Journal International, 178, 1078-1097. https://doi.org/10.1111/j.1365-246X.2009.04186.x
[76]
Müller, R.D., Sdrolias, M., Gaina, C., Steinberger, B. and Heine, C. (2008) Long-Term Sealevel Fluctuations Driven by Ocean Basin Dynamics. Science, 319, 1357-1362. https://doi.org/10.1126/science.1151540
[77]
Hager, B.H. and O’Connell, R.J. (1981) A Simple Global Model of Plate Dynamics and Mantle Convection. Journal of Geophysical Research: Planets, 86, 4843-4867. https://doi.org/10.1029/JB086iB06p04843
[78]
Lithgow-Bertelloni, C. and Richards, M. (1998) The Dynamics of Cenozoic and Mesozoic Plate Motions. Reviews of Geophysics, 36, 27-78. https://doi.org/10.1029/97RG02282
[79]
Conrad, C. and Lithgow-Bertelloni, C. (2002) How Mantle Slabs Drive Plate Tectoncs. Science, 298, 207-209. https://doi.org/10.1126/science.1074161
[80]
Stadler, G., Gurnis, M., Burstedde, C., Wilcox, L., Alisic, L. and Ghattas, O. (2010) The Dynamics of Plate Tectonics and Mantle Flow: From Local to Global Scales. Science, 329, 1033. https://doi.org/10.1126/science.1191223
[81]
Seton, M., Müller, R.D., Zahirovic, S., Gaina, C., Torsvik, T., Shephard, G., Talsma, A., Gurnis, M., Turner, M., Maus, S. and Chandler, M. (2012) Global Continental and Ocean Basin Reconstructions Since 200 Ma. Earth-Science Reviews, 113, 212-270. https://doi.org/10.1016/j.earscirev.2012.03.002
[82]
Sandwell, D.T., Müller, R.D., Smith, W.H.F., Garcia, E. and Francis, R. (2014) New Global Marine Gravity Model from CryoSat-2 and Jason-1 Reveals Buried Tectonic Structure. Science, 346, 65-67. https://doi.org/10.1126/science.1258213
[83]
Earth Byte Group Publications School of Geosciences, University of Sydney, New South Wales, Australia. www.earthbyte.org/publications-archive/
[84]
Powell, C.M., McElhinny, M.W., Li, Z.X., Meert, J.G. and Park, J.K. (1993) Paleomagnetic Constraints on Timing of the Neoproterozoic Breakup of Rodinia and the Cambrian Formation of Gondwana. Geology, 21, 889-892. https://doi.org/10.1130/0091-7613(1993)021<0889:PCOTOT>2.3. CO;2
[85]
Powell, C.M., Preiss, W.V., Gatehouse, C.G., Krapez, B. and Li, Z.X. (1994) South Australian Record of a Rodinian Epicontinental Basin and Its Mid-Neoproterozoic Breakup (~700 Ma) to Form the Palaeo-Pacific Ocean. Tectonophysics, 237, 113-140. https://doi.org/10.1016/0040-1951(94)90250-X
[86]
Dalziel, I.W. (1997) Neoproterozoic-Paleozoic Geography and Tectonics: Review, Hypothesis, Environmental Speculation. Geological Society of America Bulletin, 109, 16-42. https://doi.org/10.1130/0016-7606(1997)109<0016:ONPGAT>2.3. CO;2
[87]
Kirschvink, J.L. (1992) Late Proterozoic Low-Latitude Global Glaciation: The Snowball Earth. In: Schopf, J. and Klein, C. Eds., In the Proterozoic Biosphere: A Multidisciplinary Study, Cambridge University Press, Cambridge, UK, 51-52.
[88]
Kadyshevich, E.A. and Ostrovskii, V.E. (2009) Hydrate Hypothesis of Living Matter Origination (LOH-hypothesis). Journal of Thermal Analysis and Calorimetry, 95, 571-578. https://doi.org/10.1007/s10973-008-9546-5
[89]
Morgan, J.W. and Anders, E. (1980) Chemical Composition of Earth, Venus, and Mercury. Proceedings of the National Academy of Sciences of the United States of America, 77, 6973-6977. https://doi.org/10.1073/pnas.77.12.6973
[90]
Brown, G.C. and Mussett, A.E. (1981) The Inaccessible Earth. An Integrated View to Its Structure and Composition. Allen & Unwin, London.
[91]
Turcotte, D.L. and Schubert, G. (2002) Geodynamics. Cambridge University Press, Cambridge, England, UK.
[92]
Lowrie, W. (2007) Fundamentals of Geophysics. Cambridge University Press, Cambridge, UK. https://doi.org/10.1017/CBO9780511807107
[93]
Dawson, J.B. (1980) Kimberlites and Their Xenoliths. Springer, Berlin. https://doi.org/10.1007/978-3-642-67742-7
[94]
Brenker, F.E., Vollmer, C., Vincze, L., Vekemans, B., Szymanski, A., Janssens, K., Szaloki, I., Nasdala, L. and Kaminsky, F. (2007) Carbonates from the Lower Part of Transition Zone or Even the Lower Mantle. Earth and Planetary Science Letters, 260, 1-9. https://doi.org/10.1016/j.epsl.2007.02.038
[95]
Wirth, R., Kaminsky, F., Matsyuk, S. and Schreiber, A. (2009) Unusual Micro-and Nano-Inclusions in Diamonds from the Juina Area, Brazil. Earth and Planetary Science Letters, 286, 292-303. https://doi.org/10.1016/j.epsl.2009.06.043
[96]
Kaminsky, F.V., Khachatryan, G.K., Andreazza, P., Araujo, D. and Griffin, W.L. (2009) Super-Deep Diamonds from Kimberlites in the Juina Area, Mato Grosso State, Brazil. Lithos, 112S, 833-842. https://doi.org/10.1016/j.lithos.2009.03.036
[97]
Sobolev, N.V., Kaminsky, F.V., Griffin, W.L., Efimova, E.S., Win, T.T., Ryan, C.G. and Botkunov, A. (1997) Mineral Inclusions in Diamonds from the Sputnik Kimberlite Pipe, Yakutia. Lithos, 39, 135-157. https://doi.org/10.1016/S0024-4937(96)00022-9
[98]
Wirth, R., Vollmer, C., Brenker, F., Matsyuk, S. and Kaminsky, F. (2007) Nanocrystalline Hydrous Aluminium Silicate in Superdeep Diamonds from Juina (Mato Grosso State, Brazil). Earth and Planetary Science Letters, 259, 384-399. https://doi.org/10.1016/j.epsl.2007.04.041
Hayman, P.C., Kopylova, M.G. and Kaminsky, F.V. (2005) Lower Mantle Diamonds from Rio Soriso (Juina, Brazil). Contributions to Mineralogy and Petrology, 149, 430-445. https://doi.org/10.1007/s00410-005-0657-8
[101]
Kaminsky, F., Wirth, R., Matsyuk, S., Schreiber, A. and Thomas, R. (2009) Nyerereite and Nahcolite Inclusions in Diamond: Evidence for Lower-Mantle Carbonatitic Magmas. Mineralogical Magazine, 73, 797-816. https://doi.org/10.1180/minmag.2009.073.5.797
[102]
Bulanova, G.P., Walter, M.J., Smith, C.B., Kohn, S.C., Armstrong, L.S., Blundy, J. and Gobbo, L. (2010) Mineral Inclusions in Sublithospheric Diamonds from Collier 4 Kimberlite Pipe, Juina, Brazil: Subducted Protoliths, Carbonated Melts and Primary. Geophysical Research Abstracts, 12, EGU2010-5268-2012. https://doi.org/10.1007/s00410-010-0490-6
[103]
Stachel, T., Harris, J.W., Brey, G.P. and Joswig, W. (2000) Kankan Diamonds (Guinea) II: Lower Mantle Inclusion Parageneses. Contributions to Mineralogy and Petrology, 140, 16-27. https://doi.org/10.1007/s004100000174
[104]
Kaminsky, F. (2012) Mineralogy of the Lower Mantle: A Review of “Super-Deep” Mineral Inclusions in Diamond. Earth-Science Reviews, 110, 127-147. https://doi.org/10.1016/j.earscirev.2011.10.005
[105]
Barnes, I.L., Garner, E.L., Gramlich, J.W., Machlan, L.A., Moody, J.R., Moore, L.J., Murphy, T.J. and Shields, W.R. (1973) Isotopic Abundance Ratios and Concentrations of Selected Elements in Some Apollo 15 and Apollo 16 Samples. Proceedings of the Fourth Lunar Science Conference (Lunar and Planetary Science Institute), Vol. 2, 1197-1207.
[106]
Burnett, D.S., Lippolt, H.J. and Wasserburg, G.J. (1966) The Relative Isotopic Abundance of 40 K in Terrestrial and Meteoritic Samples. Journal of Geophysical Research, 71, 1249-1265. https://doi.org/10.1029/JZ071i004p01249
[107]
Garner, E.L., Machlan, L.A. and Barnes, I.L. (1975) The Isotopic Composition of Lithium, Potassium, and Rubidium in Some Apollo 11, 12, 14, 15, and 16 Samples. Proceedings of the Sixth Lunar Science Conference, Houston, Texas, 17-21 March 1975, 1845-1855.
[108]
Church, S.E., Tilton, G.R., Wright, J.E. and Lee-Hu, C.-N. (1976) Volatile Element Depletion and 39K/41K Fractionation in Lunar Soils. Proceedings of the Seventh Lunar Science Conference, Houston, Texas, 15-19 March 1976, 423-439.
[109]
Schreiner, G.D.L. and Verbeek, A.A. (1965) Variations in 39K/4IK Ratio and Movement of Potassium in a Granite-Shale Contact Region. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 285, 423-429. https://doi.org/10.1098/rspa.1965.0114
[110]
Verbeek, A.A. and Schreiner, G.D.L. (1967) Variations in 39K/41K Ratio and Movement of Potassium in a Granite-Amphibolite Contact Region. Geochimica et Cosmochimica Acta, 31, 2125-2133. https://doi.org/10.1016/0016-7037(67)90056-7
[111]
Schreiner, G.D.L. and Welke, H.-J.H.F.D. (1971) Variations in 39K/41K Ratio and Movement of Potassium in Heated and Stressed Zenoliths. Geochimica et Cosmochimica Acta, 35, 719-726. https://doi.org/10.1016/0016-7037(71)90069-X
[112]
Owen, T., Biemann, K., Rushneck, D.R., Biller, J.E., Howarth, D.W. and Lafleur, A.L. (1977) The Composition of the Atmosphere at the Surface of Mars. Journal of Geophysical Research: Planets, 82, 4635-4639. https://doi.org/10.1029/JS082i028p04635
[113]
Swindle, T.D., Caffee, M.W. and Hohenberg, C.M. (1986) Xenon and Other Noble Gases in Shergottites. Geochimica et Cosmochimica Acta, 50, 1001-1015. https://doi.org/10.1016/0016-7037(86)90381-9
[114]
Ocker, K.D. and Gilmour, J.D. (2004) Martian Xenon Components in Shergotty Mineral Separates: Locations, Sources, and Trapping Mechanisms. Meteoritics & Planetary Science, 39, 1967-1981. https://doi.org/10.1111/j.1945-5100.2004.tb00090.x
[115]
Mitrofanov, I., Zuber, M.T., Litvak, M.L., Boynton, W.V., Smith, D.E., Drake, D., Hamara, D., Kozyrev, A.S., Sanin, A.B., Shinohara, C., Saunders, R.S. and Tretyakov, V. (2003) CO2 Snow Depth and Subsurface Water Ice Abundance in the North Hemisphere of Mars. Science, 300, 2081-2084. https://doi.org/10.1126/science.1084350
[116]
Webster, C.R., Mahaffy, P.R., Atreya, S.K., Flesch, G.J., Mischna, M.A., Meslin, P.-Y., Farley, K.A., Conrad, P.G., Christensen, L.E., Pavlov, A.A., Martín-Torres, J., Zorzano, M.-P., McConnochie, T.H., Owen, T., Eigenbrode, J.L., Glavin, D.P., Steele, A., Malespin, C.A., Archer Jr., P.D., Sutter, B., Coll, P., Freissinet, C., McKay, C.P., Moores, J.E., Schwenzer, S.P., Bridges, J.C., Navarro-Gonzalez, R., Gellert, R. and Lemmon, M.T. (2015) Mars Methane Detection and Variability at Gale Crater. Science, 347, 415. https://doi.org/10.1126/science.1261713
[117]
Mumma, M.J., Villanueva, G.L., Novak, R.E., Hewagama, T., Bonev, B.P., DiSanti, M.A., Mandell, A.M. and Smith, M.D. (2009) Strong Release of Methane on Mars in Northern Summer 2003. Science, 323, 1041-1045. https://doi.org/10.1126/science.1165243
[118]
Noffke, N. (2015) Ancient Sedimentary Structures in the <3.7 Ga Gillespie Lake Member, Mars, That Resemble Macroscopic Morphology, Spatial Associations, and Temporal Succession in Terrestrial Microbialites. Astrobiology, 15, 169-192. https://doi.org/10.1089/ast.2014.1218
[119]
Aharonson, O., Zuber, M.T. and Rothman, D.H. (2001) Mars Topography Statistics of Mars’ Topography from the Mars Orbiter Laser Altimeter’ Slopes, Correlations, and Physical Models. Journal of Geophysical Research, 106, 23723-723735. https://doi.org/10.1029/2000JE001403
[120]
McDonough, W.F. (2003) Compositional Model for the Earth’s Core. Treatise on Geochemistry, 2, 547-568. https://doi.org/10.1016/B0-08-043751-6/02015-6