全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Class of Charged Fluid Balls in General Relativity

DOI: 10.4236/ijaa.2016.64038, PP. 494-511

Keywords: Exact Solution, Einstein’s Field Equations, Charged Fluid Ball, Compact Star, General Relativity

Full-Text   Cite this paper   Add to My Lib

Abstract:

In the present study, we have obtained a new analytical solution of combined Einstein-Maxwell field equations describing the interior field of a ball having static spherically symmetric isotropic charged fluid within it. The charge and electric field intensity are zero at the center and monotonically increasing towards the boundary of the fluid ball. Besides these, adiabatic index is also increasing towards the boundary and becomes infinite on it. All other physical quantities such as pressure, density, adiabatic speed of sound, charge density, adiabatic index are monotonically decreasing towards the surface. Causality condition is obeyed at the center of ball. In the limiting case of vanishingly small charge, the solution degenerates into Schwarzchild uniform density solution for electrically neutral fluid. The solution joins smoothly to the Reissner-Nordstrom solution over the boundary. We have constructed a neutron star model by assuming the surface density \"\". The mass of the neutron star comes \"\" with radius 14.574 km.

References

[1]  Schwarzschild, K. (1916) On the Gravitational Field of a Mass Point According to Einstein’s Theory. Sitzungsberichte der koniglich Preussischen Akademie der Wissenschaften Berlin (Mathematical Physics), S42, 189-196.
[2]  Bonnor, W.B. (1960) The Mass of a Static Charged Sphere. Zeitschrift für Physik, 160, 59.
[3]  Bonnor, W.B. (1965) The Equilibrium of a Charged Sphere. Monthly Notices of the Royal Astronomical Society, 129, 443.
https://doi.org/10.1093/mnras/129.6.443
[4]  Oppenheimer, J.R. and Snyder, H. (1939) On Continued Gravitational Contraction. Physical Review, 56, 455.
https://doi.org/10.1103/PhysRev.56.455
[5]  Shvartsman, V.F. (1971) The Electric Charge of Stars. Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 33, 475-648.
[6]  Buchdahl, H.A. (1959) General Relativistic Fluid Spheres. Physical Review, 116, 1027.
https://doi.org/10.1103/PhysRev.116.1027
[7]  Delgaty, M.S.R. and Lake, K. (1998) Physical Acceptability of Isolated, Static, Spherically Symmetric, Perfect Fluid Solutions of Einstein’s Equations. Computer Physics Communications, 115, 395-415.
https://doi.org/10.1016/S0010-4655(98)00130-1
[8]  Adler, R.J. (1974) A Fluid Sphere in General Relativity. Journal of Mathematical Physics, 15, 727.
https://doi.org/10.1063/1.1666717
[9]  Heintzmann, H. (1969) New Exact Static Solutions of Einstein’s Field Equations. Zeitschrift für Physik, 228, 489-493.
[10]  Tolman, R.C. (1939) Static Solutions of Einstein’s Field Equations for Spheres of Fluid. Physical Review, 55, 364.
https://doi.org/10.1103/PhysRev.55.364
[11]  Finch, N.R. and Skea, J.E.F. (1989) A Realistic Stellar Model Based on an Ansatz of Duorah and Ray. Classical and Quantum Gravity, 6, 467-476.
https://doi.org/10.1088/0264-9381/6/4/007
[12]  Patwardhan, G.K. and Vaidya, P.C. (1943) Relativistic Distributions of Matter of Radial Symmetry. Journal of the University of Bombay, 12, 23-26.
[13]  Mehra, A.L. (1966) Radially Symmetric Distribution of Matter. Journal of the Australian Mathematical Society, 6, 153-156.
https://doi.org/10.1017/S1446788700004730
[14]  Kuchowicz, B. (1968) General Relativistic Fluid Spheres. II. Solutions of the Equation for e/sup-lambda/. Acta Physica Polonica, 34, 131-140.
[15]  Matese, J.J. and Whitman, P.G. (1980) New Method for Extracting Static Equilibrium Configurations in General Relativity. Physical Review D, 22, 1270-1275.
https://doi.org/10.1103/PhysRevD.22.1270
[16]  Durgapal, M.C. (1982) A Class of New Exact Solutions in General Relativity. Journal of Physics A: Mathematical and General, 15, 2637-2644.
https://doi.org/10.1088/0305-4470/15/8/039
[17]  Nariai, S. (1950) On Some Static Solutions of Einstein’s Gravitational Field Equations in a Spherically Symmetric Case. The Science Reports of the Tohoku University, 34, 160.
[18]  Goldman, S.P. (1978) Physical Solutions to General-Relativistic Fluid Sphere. Astrophysical Journal, 226, 1079-1086.
https://doi.org/10.1086/156684
[19]  Ivanov, B.V. (2012) Collapsing Shear-Free Perfect Fluid Spheres with Heat Flow. General Relativity and Gravitation, 44, 1835-1855.
https://doi.org/10.1007/s10714-012-1370-3
[20]  Ivanov, B.V. (2010) Evolving Spheres of Shear-Free Anisotropic Fluid. International Journal of Modern Physics A, 25, 3975-3991.
https://doi.org/10.1142/S0217751X10050202
[21]  Ivanov, B.V. (2011) Self-Gravitating Spheres of Anisotropic Fluid in Geodesic Flow. International Journal of Modern Physics D, 20, 319-334.
https://doi.org/10.1142/S0218271811018858
[22]  Ivanov, B.V. (2016) A Different Approach to Anisotropic Spherical Collapse with Shear and Heat Radiation. International Journal of Modern Physics D, 25, Article ID: 1650049.
https://doi.org/10.1142/s0218271816500498
[23]  Ivanov, B.V. (2016) All Solutions for Geodesic Anisotropic Spherical Collapse with Shear and Heat Radiation. Astrophysics and Space Science, 361, 18.
https://doi.org/10.1007/s10509-015-2603-1
[24]  Pant, N. (2011) Some New Exact Solutions with Finite Central Parameters and Uniform Radial Motion of Sound. Astrophysics and Space Science, 331, 633-644.
https://doi.org/10.1007/s10509-010-0453-4
[25]  Maurya, S.K. and Gupta, K. (2013) Charged Fluid to Anisotropic Fluid Distribution in General Relativity. Astrophysics and Space Science, 344, 243-251.
https://doi.org/10.1007/s10509-012-1302-4
[26]  Pant, N., Fuloria, P. and Tewari, B.C. (2012) A New Well Behaved Exact Solution in General Relativity for Perfect Fluid. Astrophysics and Space Science, 340, 407-412.
https://doi.org/10.1007/s10509-012-1068-8
[27]  Pant, N., Fuloria, P. and Pradhan, N. (2014) An Exact Solution of Perfect Fluid in Isotropic Coordinates, Compatible with Relativistic Modeling of Star. International Journal of Theoretical Physics, 53, 993-1002.
https://doi.org/10.1007/s10773-013-1892-9
[28]  Pant, D.N. and Sah, A. (1982) Class of Solutions of Einstein’s Field Equations for Static Fluid Spheres. Physical Review D, 26, 1254-1261.
https://doi.org/10.1103/PhysRevD.26.1254
[29]  Pant, D.N. and Sah, A. (1985) Massive Fluid Spheres in General Relativity. Physical Review D, 32, 1358-1363.
https://doi.org/10.1103/PhysRevD.32.1358
[30]  Tewari, B.C., Charan, K. and Chandra, P. (2015) A Well Behaved Exact Solution for Spherically Symmetric Perfect Fluid Ball. Journal of Ramanujan Society of Mathematics and Mathematical Sciences, 4, 77-86.
[31]  Sah, A., Chandra, P. and Charan, K. (2016) Spherically Symmetric Anisotropic Perfect Fluid Ball in General Relativity. South East Asian Journal of Mathematics and Mathematical Science, 12, 81-92.
[32]  Herrera, L. and Santos, N.O. (1997) Local Anisotropy in Self-Gravitating Systems. Physics Reports, 286, 53-130.
https://doi.org/10.1016/S0370-1573(96)00042-7
[33]  Herrera, L., Santos, N.O. and Wang, A. (2008) Shearing Expansion-Free Spherical Anisotropic Fluid Evolution. Physical Review D, 78, Article ID: 084026.
https://doi.org/10.1103/PhysRevD.78.084026
[34]  Herrera, L., Ospino, J. and Perisco, A.D. (2008) All Static Spherically Symmetric Anisotropic Solutions of Einstein’s Equations. Physical Review D, 77, Article ID: 027502.
https://doi.org/10.1103/PhysRevD.77.027502
[35]  Herrera, L., Ospino, J., Perisco, A.D., Fuenmayor, E. and Triconis, O. (2009) Structure and Evolution of Self-Gravitating Objects and the Orthogonal Splitting of the Riemann Tensor. Physical Review D, 79, Article ID: 064025.
https://doi.org/10.1103/physrevd.79.064025
[36]  Herrera, L. Parisco, A.D., Hernandez, P. and Santos, N.O. (2004) Dynamics of Dissipative Gravitational Collapse. Physical Review D, 70, Article ID: 084004.
https://doi.org/10.1103/physrevd.70.084004
[37]  Herrera, L., Parisco, A.D., Hernandez, P. and Santos, N.O. (1998) On the Role of Density Inhomogeneity and Local Anisotropy in the Fate of Spherical Collapse. Physics Letters A, 237, 113-118.
https://doi.org/10.1016/S0375-9601(97)00874-8
[38]  Tewari, B.C. and Charan, K. (2015) Horizon Free Eternally Collapsing Anisotropic Radiating Star. Astrophysics and Space Science, 357, 107.
https://doi.org/10.1007/s10509-015-2335-2
[39]  Tewari, B.C. and Charan, K. (2014) Radiating Star, Shear-Free Gravitational Collapse without Horizon. Astrophysics and Space Science, 351, 613-617.
https://doi.org/10.1007/s10509-014-1851-9
[40]  Tewari, B.C., Charan, K. and Rani, J. (2016) Spherical Gravitational Collapse of Anisotropic Radiating Fluid Sphere. International Journal of Astronomy and Astrophysics, 6, 155-165.
https://doi.org/10.4236/ijaa.2016.62013
[41]  Tewari, B.C. (2013) Collapsing Shear-Free Radiating Fluid Spheres. General Relativity and Gravitation, 45, 1547-1558.
https://doi.org/10.1007/s10714-013-1545-6
[42]  Nduka, A. (1976) Charged Fluid Sphere in General Relativity. General Relativity and Gravitation, 7, 493-499.
https://doi.org/10.1007/BF00766408
[43]  Nduka, A. (1977) Some Exact Solutions Charged General Relativistic Fluid Sphere. Acta Physica Polonica B, 8, 75-79.
[44]  Whitman, P.G. and Burch, R.C. (1982) Charged Spheres in General Relativity. Physical Review D, 24, 2049-2055.
https://doi.org/10.1103/PhysRevD.24.2049
[45]  Tikekar, R. (1984) Spherical Charged Fluid Distributions in General Relativity. Journal of Mathematical Physics, 25, 1481-1483.
https://doi.org/10.1063/1.526318
[46]  Ivanov, B.V. (2002) Static Charged Perfect Fluid Spheres in General Relativity. Physical Review D, 65, Article ID: 104001.
https://doi.org/10.1103/physrevd.65.104001
[47]  Ray, S., Espindola, A., Malheiro, M., Lemos, J. and Zanchin, V. (2003) Electrically Charged Compact Stars and Formation of Charged Black Hole. Physical Review D, 68, Article ID: 084004.
https://doi.org/10.1103/physrevd.68.084004
[48]  Stettner, R. (1973) On the Stability of Homogeneous, Spherically Symmetric, Charged Fluid in Relativity. Annals of Physics, 80, 212-227.
https://doi.org/10.1016/0003-4916(73)90325-4
[49]  Krori, K.D. and Barua, J. (1975) A Singularity Free Solution for a Charged Fluid Sphere in General Relativity. Journal of Physics A: Mathematical and General, 8, 508-511.
https://doi.org/10.1088/0305-4470/8/4/012
[50]  Ray, S. and Das, B. (2004) Tolman-Bayin Type Static Charged Fluid Spheres in General Relativity. Monthly Notices of the Royal Astronomical Society, 349, 1331-1334.
https://doi.org/10.1111/j.1365-2966.2004.07602.x
[51]  Pant, N. and Negi, P.S. (2012) Variety of Well Behaved Exact Solutions of Einstein-Maxwell Field Equations: An Application to Strange Quark Stars, Neutron Stars and Pulsars. Astrophysics and Space Science, 338, 163-169.
https://doi.org/10.1007/s10509-011-0919-z
[52]  Florides, P.S. (1983) The Complete Field of Charged Perfect Fluid Spheres and Other Static Spherically Symmetric Charged Distributions. Journal of Physics A: Mathematical and General, 16, 1419-1433.
https://doi.org/10.1088/0305-4470/16/7/018
[53]  Dionysiou, D.D. (1982) Equilibrium of a Static Charged Perfect Fluid Sphere. Astrophysics and Space Science, 85, 331-343.
https://doi.org/10.1007/BF00653455
[54]  Pant, N., Tewari, B. and Fuloria, P. (2011) Well Behaved Class of Exact Solutions of Einstein-Maxwell Field Equations in General Relativity. Astrophysics and Space Science, 2, 1538-1543.
[55]  Pant, N., Mehta, R.N. and Pant, M. (2011) Well Behaved Class of Charge Analogue of Heintzmann’s Relativistic Exact Solution. Astrophysics and Space Science, 332, 473-479.
https://doi.org/10.1007/s10509-010-0509-5
[56]  Pant, M.J. and Tewari, B.C. (2011) Well Behaved Class of Charge Analogue of Adler’s Relativistic Exact Solution. Journal of Modern Physics, 2, 481-487.
https://doi.org/10.4236/jmp.2011.26058
[57]  Fuloria, P., Tewari, B.C. and Joshi, B.C. (2011) Well Behaved Class of Charge Analogue of Durgapal’s Reltivistic Exact Solution. Journal of Modern Physics, 2, 1156-1160.
https://doi.org/10.4236/jmp.2011.210143
[58]  Gupta, Y.K. and Maurya, S.K. (2010) A Class of Charge Analogues of Durgapal and Fuloria Superdense Star. Astrophysics and Space Science, 331, 135-144.
https://doi.org/10.1007/s10509-010-0445-4
[59]  Bijalwan, N. and Gupta, Y.K. (2008) Nonsingular Charged Analogues of Schwarzschild’s Interior Solution. Astrophysics and Space Science, 317, 251-260.
https://doi.org/10.1007/s10509-008-9887-3
[60]  Gupta, Y.K. and Kumar, M. (2005) A Superdense Star Model as Charged Analogue of Schwarzschild’s Interior Solution. General Relativity and Gravitation, 37, 575-583.
https://doi.org/10.1007/s10714-005-0043-x
[61]  Sah, A. and Chandra, P. (2016) Spherical Anisotropic Fluid Distribution in General Relativity. World Journal of Mechanics, 6, 487-504.
http://dx.doi.org/10.4236/wjm.2016.612034

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133