Order
unit normed linear spaces are a special type of regularly ordered normed linear
spaces and therefore the first section is a short collection of the fundamental
results on this type of normed linear spaces. The connection between order unit
normed linear spaces and base normed linear spaces within the category of
regularly ordered normed linear spaces is described in Section 2, and Section 3 at last,
contains the results on Banach limits in an arbitrary order unit normed linear
space. It is shown that the original results on Banach limits are valid for a greater range.
References
[1]
Armario, R., Garcia-Pacheco, F.J. and Pérez-Fernández, F.J. (2013) On Vector-Valued Banach Limits. Functional Analysis and Its Applications, 47, 82-86. (In Russian) (Transl. (2013) Functional Analysis and Its Applications, 47, 315-318.)
[2]
Davis, R.B. (1968) The Structure and Ideal Theory of the Predual of a Banach Lattices. Transactions of the AMS, 131, 544-555. https://doi.org/10.1090/S0002-9947-1968-0222604-8
[3]
Min, K.Ch. (1983) An Exponential Law for Regular Ordered Banach Spaces. Cahiers de Topologie et Géometrie Differentielle Catégoriques, 24, 279-298.
Pumplün, D. (1999) Elemente der Kategorientheorie. Spektrum Akademischer Verlag, Heidelberg, Berlin.
[6]
Pumplün, D. (2002) The Metric Completion of Convex Sets and Modules. Results in Mathematics, 41, 346-360. https://doi.org/10.1007/BF03322777
[7]
Jameson, C. (1971) Ordered Linear Spaces. Lecture Notes in Mathematics (Volume 141), Springer, Berlin.
[8]
Pumplün, D. (1995) Banach Spaces and Superconvex Modules. In: Behara, M., et al. (Eds.), Symposia Gaussiana, de Gruyter, Berlin, 323-338. https://doi.org/10.1515/9783110886726.323
[9]
Pumplün, D. and Röhrl, H. (1989) The Eilenberg-Moore Algebras of Base Normed Spaces. In: Banaschewski, Gilmour, Herrlich, Eds., Proceedings of the Symposium on Category Theory and its Applications to Topology, University of Cape Town, Cape Town, 187-200.
[10]
Ellis, E.J. (1966) Linear Operators in Partially Ordered Normed Vector Spaces. Journal of the London Mathematical Society, 41, 323-332. https://doi.org/10.1112/jlms/s1-41.1.323
[11]
Klee Jr., V.L. (1954) Invariant Extensions of Linear Functionals. Pacific Journal of Mathematics, 4, 37-46.
[12]
Roth, W. (2000) Hahn-Banach Type Theorems for Locally Convex Cones. Journal of the Australian Mathematical Society Series A, 68, 104-125. https://doi.org/10.1017/S1446788700001609
[13]
Pumplün, D. (2011) A Universal Compactification of Topological Positively Convex Sets and Modules. Journal of Convex Analysis, 8, 255-267.
[14]
Pumplün, D. (2003) Positively Convex Modules and Ordered Normed Linear Spaces. Journal of Convex Analysis, 41, 109-127.