全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Banach Limits Revisited*

DOI: 10.4236/apm.2016.613075, PP. 1022-1036

Keywords: Order Unit Normed Spaces, Base Normed Spaces, Banach Limits

Full-Text   Cite this paper   Add to My Lib

Abstract:

Order unit normed linear spaces are a special type of regularly ordered normed linear spaces and therefore the first section is a short collection of the fundamental results on this type of normed linear spaces. The connection between order unit normed linear spaces and base normed linear spaces within the category of regularly ordered normed linear spaces is described in Section 2, and Section 3 at last, contains the results on Banach limits in an arbitrary order unit normed linear space. It is shown that the original results on Banach limits are valid for a greater range.

References

[1]  Armario, R., Garcia-Pacheco, F.J. and Pérez-Fernández, F.J. (2013) On Vector-Valued Banach Limits. Functional Analysis and Its Applications, 47, 82-86. (In Russian) (Transl. (2013) Functional Analysis and Its Applications, 47, 315-318.)
[2]  Davis, R.B. (1968) The Structure and Ideal Theory of the Predual of a Banach Lattices. Transactions of the AMS, 131, 544-555.
https://doi.org/10.1090/S0002-9947-1968-0222604-8
[3]  Min, K.Ch. (1983) An Exponential Law for Regular Ordered Banach Spaces. Cahiers de Topologie et Géometrie Differentielle Catégoriques, 24, 279-298.
[4]  Wong, Y.C. and Ng, K.F. (1973) Partially Ordered Topological Vector Spaces. Oxford Mathematical Monographs, Clarendon Press, Oxford.
[5]  Pumplün, D. (1999) Elemente der Kategorientheorie. Spektrum Akademischer Verlag, Heidelberg, Berlin.
[6]  Pumplün, D. (2002) The Metric Completion of Convex Sets and Modules. Results in Mathematics, 41, 346-360.
https://doi.org/10.1007/BF03322777
[7]  Jameson, C. (1971) Ordered Linear Spaces. Lecture Notes in Mathematics (Volume 141), Springer, Berlin.
[8]  Pumplün, D. (1995) Banach Spaces and Superconvex Modules. In: Behara, M., et al. (Eds.), Symposia Gaussiana, de Gruyter, Berlin, 323-338.
https://doi.org/10.1515/9783110886726.323
[9]  Pumplün, D. and Röhrl, H. (1989) The Eilenberg-Moore Algebras of Base Normed Spaces. In: Banaschewski, Gilmour, Herrlich, Eds., Proceedings of the Symposium on Category Theory and its Applications to Topology, University of Cape Town, Cape Town, 187-200.
[10]  Ellis, E.J. (1966) Linear Operators in Partially Ordered Normed Vector Spaces. Journal of the London Mathematical Society, 41, 323-332.
https://doi.org/10.1112/jlms/s1-41.1.323
[11]  Klee Jr., V.L. (1954) Invariant Extensions of Linear Functionals. Pacific Journal of Mathematics, 4, 37-46.
[12]  Roth, W. (2000) Hahn-Banach Type Theorems for Locally Convex Cones. Journal of the Australian Mathematical Society Series A, 68, 104-125.
https://doi.org/10.1017/S1446788700001609
[13]  Pumplün, D. (2011) A Universal Compactification of Topological Positively Convex Sets and Modules. Journal of Convex Analysis, 8, 255-267.
[14]  Pumplün, D. (2003) Positively Convex Modules and Ordered Normed Linear Spaces. Journal of Convex Analysis, 41, 109-127.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133