全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Simple Security Proof for Entanglement-Based Quantum Key Distribution

DOI: 10.4236/jqis.2016.64018, PP. 296-303

Keywords: Quantum Key Distribution, Simple Security Proof, Entanglement-Based, Quantum Cryptography, Polarisation

Full-Text   Cite this paper   Add to My Lib

Abstract:

Quantum cryptography exploits the quantum mechanical properties of communication lines to enhance the security of the so-called key distribution. In this work, we explain the role played by quantum mechanics in cryptographic tasks and also investigate how secure is quantum cryptography. More importantly, we show by a simple security proof that for any state sent by the sender, the eavesdropper can only guess the output state with a probability that will allow her not to learn more than half of the classical Shannon information shared between the legitimate parties. This implies that with high probability, the shared key is secure.

References

[1]  Gisin, N., Ribordy, G., Tittel, W. and Zbinden, H. (2002) Quantum Cryptography. Reviews of Modern Physics, 74, 1-45.
https://doi.org/10.1103/RevModPhys.74.145
[2]  Weisner, S. (1983) Conjugate Coding. ACM SIGACT News, 15, 78-88.
https://doi.org/10.1145/1008908.1008920
[3]  Bennett, C.H. (1984) Quantum Cryptography: Public Key Distribution and Coin Tossing. Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, 175, 7-11.
[4]  Ekert, A. (1991) Quantum Cryptography Based on Bell’s Theorem. Physical Review Letters, 67, 661-663.
https://doi.org/10.1103/PhysRevLett.67.661
[5]  Bell, J. (1964) On the Einstein-Podolsky-Rosen Paradox. Physics, 1, 195-200.
[6]  Bennett, C.H. (1992) Quantum Cryptography Using Any Two Nonorthogonal States. Physical Review Letters, 68, 3121-3124.
https://doi.org/10.1103/PhysRevLett.68.3121
[7]  Bruß, D. (1998) Optimal Eavesdropping in Quantum Cryptography with Six States. Physical Review Letters, 81, 3018-3021.
https://doi.org/10.1103/PhysRevLett.81.3018
[8]  Phoenix, S.J., Barnett, S.M. and Chefles, A. (2000) Three-State Quantum Cryptography. Journal of Modern Optics, 47, 507-516.
https://doi.org/10.1080/09500340008244056
[9]  Scarani, V., Acn, A., Ribordy, G. and Gisin, N. (2004) Quantum Cryptography Protocols Robust against Photon Number Splitting Attacks for Weak Laser Pulse Implementations. Physical Review Letters, 92, Article ID: 057901.
https://doi.org/10.1103/PhysRevLett.92.057901
[10]  Scarani, V., Bechmann-Pasquinucci, H., Cerf, N., Dusek, M., Lütkenhaus, N. and Peev, M. (2009) The Security of Practical Quantum Key Distribution. Reviews of Modern Physics, 81, 1301-1350.
https://doi.org/10.1103/RevModPhys.81.1301
[11]  Mayers, D. (1996) Unconditional Security in Quantum Cryptography. Journal of the ACM, 48, 351-406.
https://doi.org/10.1145/382780.382781
[12]  Shor, P. and Preskill, J. (2000) Simple Proof of Security of the BB84 Quantum Key Distribution Protocol. Physical Review Letters, 85, 441-444.
https://doi.org/10.1103/PhysRevLett.85.441
[13]  Mafu, M., Marais, A. and Petruccione, F. (2014) A Necessary Condition for the Security of Coherent-One-Way Quantum Key Distribution Protocol. Applied Mathematics & Information Sciences, 8, 2769-2773.
https://doi.org/10.12785/amis/080612
[14]  Scarani, V. and Renner, R. (2008) Quantum Cryptography with Finite Resources: Unconditional Security Bound for Discrete-Variable Protocols with One-Way Postprocessing. Physical Review Letters, 100, Article ID: 200501.
https://doi.org/10.1103/PhysRevLett.100.200501
[15]  Cai, R. and Scarani, V. (2009) Finite-Key Analysis for Practical Implementations of Quantum Key Distribution. New Journal of Physics, 11, Article ID: 045024.
https://doi.org/10.1088/1367-2630/11/4/045024
[16]  Sheridan, L., Le, T.P. and Scarani, V. (2010) Finite-Key Security against Coherent Attacks in Quantum Key Distribution. New Journal of Physics, 12, Article ID: 123019.
https://doi.org/10.1088/1367-2630/12/12/123019
[17]  Abruzzo, S., Kampermann, H., Mertz, M. and Bruß, D. (2011) Quantum Key Distribution with Finite Resources: Secret Key Rates via Rényi Entropies. Physical Review A, 84, Article ID: 032321.
https://doi.org/10.1103/PhysRevA.84.032321
[18]  Tomamichel, M., Lim, C.C.W., Gisin, N. and Renner, R. (2012) Tight Finite-Key Analysis for Quantum Cryptography. Nature Communications, 3, Article Number: 634.
https://doi.org/10.1038/ncomms1631
[19]  Mafu, M., Garapo, K. and Petruccione, F. (2013) Finite-Size Key in the Bennett 1992 Quantum-Key-Distribution Protocol for Rényi Entropies. Physical Review A, 88, Article ID: 062306.
https://doi.org/10.1103/PhysRevA.88.062306
[20]  Mafu, M., Garapo, K. and Petruccione, F. (2014) Finite-Key-Size Security of the Phoenix-Barnett-Chefles 2000 Quantum-Key-Distribution Protocol. Physical Review A, 90, Article ID: 032308.
https://doi.org/10.1103/PhysRevA.90.032308
[21]  Zhou, C., Bao, W.S., Zhang, H.I., Li, H.W., Wang, Y., Li, Y. and Wang, X. (2015) Biased Decoy-State Measurement-Device-Independent Quantum Key Distribution with Finite Resources. Physical Review A, 91, Article ID: 022313.
https://doi.org/10.1103/PhysRevA.91.022313
[22]  Renner, R. (2008) Security of Quantum Key Distribution. International Journal of Quantum Information, 6, 1-127.
https://doi.org/10.1142/S0219749908003256
[23]  Hughes, R.J., Buttler, W.T., Kwiat, P.G., Luther, G.G., Morgan, G.L., Nordholt, J.E., Peterson, C.G. and Simmons, C.M. (1997) AeroSense’97. International Society for Optics and Photonics, 2-11.
[24]  Bennett, C., Bessette, F., Brassard, G., Salvail, L. and Smolin, J. (1992) Experimental Quantum Cryptography. Journal of Cryptology 5, 3-28.
https://doi.org/10.1007/BF00191318

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133