By the second
mean-value theorem of calculus (Gauss-Bonnet theorem) we prove that the class
of functions with an integral
representation of the form with a real-valued
function which is
non-increasing and decreases in infinity more rapidly than any exponential
functions, possesses zeros only on the imaginary axis.
The Riemann zeta function as it is known can be
related to an entire function with the same non-trivial zeros as . Then after a trivial argument
displacementwe relate it to a function with a representation of the
form where is rapidly decreasing
in infinity and satisfies all requirements necessary for the given proof of the
position of its zeros on the imaginary axis z=iy
References
[1]
Riemann, B. (1859) über die Anzahl der Primzahlen unter einer gegebenen Grösse. Monatsber. Akad. Berlin, 671-680; also in: Riemann, B. Gesammelte Werke, Teubner, Leipzig 1. Aufl. 1876, S. 136, 2. Aufl. 1892, S. 145; in different English tranlations as Appendix in [5] and as reprint under Original papers 12.2 in [12].
[2]
Whittaker, E.T. and Watson, G.N. (1927) A Course of Modern Analysis. Cambridge University Press, Cambridge.
[3]
Titchmarsh, E.C. (1951) The Theory of the Riemann Zeta-Function. Oxford University Press, Oxford.
[4]
Chandrasekharan, K. (1970) Arithmetical Functions. Springer-Verlag, Berlin. https://doi.org/10.1007/978-3-642-50026-8
[5]
Edwards, H.M. (1974) Riemann’s Zeta Function. Dover, New York.
Patterson, S.J. (1985) An Introduction to the Theory of the Riemann Zeta-Function. Cambridge University Press, Cambridge.
[8]
Cartier, P. (1989) An Introduction to Zeta Functions. In: Waldschmidt, M., Moussa, P., Luck, J.-M. and Itzykson, C., Eds., From Number Theory to Physics, Springer-Verlag, Berlin, 1-63.
[9]
Ivić, A. (1985) The Riemann Zeta-Function, Theory and Applications. John Wiley & Sons, New York. (Dover Publications, Mineola, New York, 2003)
[10]
Havil, J. (2003) Gamma Exploring Euler’s Constant. Princeton University Press, Princeton.
[11]
Ribenboim, P. (2004) The Little Book of Bigger Primes. Springer, New York. (German transl., Die Welt der Primzahlen. Springer, Berlin, 2006)
[12]
Borwein, P., Choi, S., Rooney, B. and Weirathmueller, A. (2008) The Riemann Hypothesis: A Resource for the Afficionado and Virtuoso Alike. Springer, New York.
[13]
Apostol, T.M. (2010) Introduction to Analytic Number Theory. Springer, New York.
[14]
Weisstein (2009) Riemann Zeta Function and R.Z.F. Zeros. In: CRC Encyclopedia of Mathematics, 3rd Edition, CRC Pr Inc. and Web: WolframMathWorld (We used the last).
[15]
Lang, S. (1993) Complex Analysis. 3rd Edition, Springer-Verlag, New York. https://doi.org/10.1007/978-3-642-59273-7
[16]
Meier, P. and Steuding, J. (2009) Wer die Zetafunktion kennt, kennt die Welt. In: Spektrum der Wissenschaft, Dossier 6/09, 12-19, Spekt. d. Wiss. Verlagsgesellschaft, Heidelberg.
[17]
Stewart, I. (2013) The Great Mathematical Problems. Profile Books, London.
[18]
Erdélyi, A. (1953) Higher Transcendental Functions, Vol. 1. McGraw Hill, New York.
[19]
Erdélyi, A. (1953) Higher Transcendental Functions, Vol. 3. McGraw Hill, New York.
[20]
Apostol, T.M. (2010) Zeta and Related Functions and Functions of Number Theorie, chaps. 25 and 27. In: Olver, F.W.J., Lozier, D.W., Boisvert, R.F. and Clark, Ch.W., Eds., NIST Handbook of Mathematical Functions, Cambridge University Press, Cambridge.
[21]
Olver, F.W.J., Lozier, D.W., Boisvert, R.F. and Clark, Ch.W., Eds. (2010) NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge.
[22]
Hilbert, D. (1902) Problèmes futures des mathématiques. C.R. 2nd Congr. Int. Math., p. 85, Paris; (Russian transl. with remarks on the state of the solution of each problem in [23]).
[23]
Linnik, Yu.V. (1969) Problemy Gilberta (in Russian). In: Aleksandrov, P.S. Ed., The Hilbert problems (in English), Nauka Moskva, 128-130.
[24]
Conrey, J.B. (2008) The Riemann Hypothesis. In: Borwein, P., Choi, S., Rooney, B. and Weirathmueller, A., Eds., The Riemann Hypothesis: A Resource for the Afficionado and Virtuoso Alike, Springer, New York, 117-129.
[25]
Bombieri, E. (2008) Problems of the Millenium: The Riemann Hypothesis. In: Borwein, P., Choi, S., Rooney, B. and Weirathmueller, A., Eds., The Riemann Hypothesis: A Resource for the Afficionado and Virtuoso Alike, Springer, New York, 94.
[26]
Ivić, A. (2008) On Some Reasons for Doubting the Riemann Hypothesis. In: Borwein, P., Choi, S., Rooney, B. and Weirathmueller, A., Eds., The Riemann Hypothesis: A Resource for the Afficionado and Virtuoso Alike, Springer, New York, 130.
[27]
von Mangoldt, H. (1905) Zur Verteilung der Nullstellen der Riemannschen Funktion . Mathematische Annalen, 60, 1-19. https://doi.org/10.1007/BF01447494
[28]
Voronin, S.M. (1975) Theorem on the Universality of the Riemann Zeta Function. Izv. Akad. Nauk SSSR, Ser. Matem., 39, 475-486, reprinted in Mathematics of the USSR-Izvestiya, 9, 443-445. https://doi.org/10.1070/IM1975v009n03ABEH001485
[29]
Steuding, J. (2004) Voronin Universality Theorem. From MathWorld—A Wolfram Web Resource, created by Eric W. Weisstein. http://mathworld.wolfram.com/VoroninUniversalityTheorem.html
[30]
Neuberger, J.W., Feiler, C., Maier, H. and Schleich, W.P. (2014) Newton Flow of the Riemann Zeta Function: Separatrices Control the Appearance of Zeros. New Journal of Physics, 16, 103023. https://doi.org/10.1088/1367-2630/16/10/103023
[31]
Neuberger, J.W., Feiler, C., Maier, H. and Schleich, W.P. (2015) The Riemann hypothesis illuminated by the Newton flow of . Physica Scripta, 90, 108015. https://doi.org/10.1088/0031-8949/90/10/108015
[32]
Bateman, H. and Erdélyi, A. (1954) Tables of Integral Transforms, Vol. 1 and Vol. 2. McGraw-Hill, New York.
[33]
Zemanian, A.H. (1987) Generalized Integral Transformations. Dover, New York.
[34]
Brychkov, J.A. and Prudnikov, A.P. (1977) Integral Transformations of Generalized Functions. Nauka, Moskva. (In Russian)
[35]
Bertrand, J., Bertrand, P. and Ovarlez, J. (2000) The Mellin Transform, chap. 11. In: Poularikas, A.D., Ed., The Transforms and Application Handbook, 2nd Edition, CRC Press LLC, Boca Raton. https://doi.org/10.1201/9781420036756.ch11
[36]
Paris, R.B. (2010) Incomplete Gamma and Related Functions, chap. 8. In: Olver, F.W.J., Lozier, D.W., Boisvert, R.F. and Clark, Ch.W., Eds., NIST Handbook of Mathematical Functions, Cambridge University Press, Cambridge, 173-192.
[37]
Courant, R. (1992) Differential and Integral Calculus, Vol. 1. John Wiley & Sons, New York.
[38]
Widder, D.V. (1947) Advanced Calculus. 2nd Edition, Prentice-Hall, Englewood Cliffs, New York. (Dover Publications, New York, 1989)
[39]
Erdélyi, A. (1953) Higher Transcendental Functions, Vol. 2. McGraw Hill, New York.