全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Spherical Anisotropic Fluid Distribution in General Relativity

DOI: 10.4236/wjm.2016.612034, PP. 487-504

Keywords: Anisotropic Fluid Ball, Exact Solutions, Einsteins Field Equations, Compact Star, General Relativity

Full-Text   Cite this paper   Add to My Lib

Abstract:

In the present investigation of a spherically symmetric electrically neutral anisotropic static fluid, we present a new solution of the Einstein’s general relativistic field equations. The solution shows positive finite central pressures, central density and central red shift. The causality condition is obeyed at the centre. The anisotropy parameter is zero at the center and monotonically increasing toward the surface. The adiabatic index is also increasing towards the surface. All the other physical quantities such as matter-energy density, radial pressure, tangential pressure, velocity of sound and red shift are monotonically decreasing towards the surface. Further by assuming the surface density?\"\", we have constructed a model of massive neutron star with mass 2.95?\"\"?with radius 18 km with all degree of suitability.

References

[1]  Schwarzschild, K. (1916) On the Gravitational Field of a Mass Point According to Einstein’s Theory. Sitzungsberichte der koniglich Preussischen Akademie der Wissenschaften Berlin (Mathematical Physics), 189-196.
[2]  Tolman, R.C. (1939) Static Solutions of Einstein’s Field Equations for Spheres of Fluid. Physical Review, 55, 364.
https://doi.org/10.1103/PhysRev.55.364
[3]  Buchdahl, H.A. (1959) General Relativistic Fluid Spheres. Physical Review D, 116, 1027.
https://doi.org/10.1103/PhysRev.116.1027
[4]  Delgaty, M.S.R. and Lake, K. (1998) Physical Acceptability of Isolated, Static, Spherically Symmetric, Perfect Fluid Solutions of Einstein’s Equations. Computer Physics Communications, 115, 395.
https://doi.org/10.1016/S0010-4655(98)00130-1
[5]  Adler, R.J. (1974) A Fluid Sphere in General Relativity. Journal of Mathematical Physics, 15, 727.
https://doi.org/10.1063/1.1666717
[6]  Heintzmann, H.Z. (1969) Newtonian Time in General Relativity. Physik, 228, 489-493.
[7]  Finch, N.R. and Skea, J.E.F. (1989) A Realistic Stellar Model Based on an Ansatz of Duorah and Ray. Class Quantum Gravity, 6, 467.
https://doi.org/10.1088/0264-9381/6/4/007
[8]  Patwardhan, G.K. and Vaidya, P.C. (1943) Relativistic Distributions of Matter of Radial Symmetry. Journal of the University of Bombay, 12, 23, Part III.
[9]  Mehra, A.L. (1966) Radially Symmetric Distribution of Matter. Journal of the Australian Mathematical Society, 6, 153.
https://doi.org/10.1017/S1446788700004730
[10]  Kuchowicz, B. (1968) General Relativistic Fluid Spheres. II. Solutions of the Equation for e−λ. Acta Physica Polonica, 34, 131.
[11]  Matese, J.J. and Whitman, P.G. (1980) New Method for Extracting Static Equilibrium Configurations in General Relativity. Physical Review D, 22, 1270.
https://doi.org/10.1103/PhysRevD.22.1270
[12]  Durgapal, M.C. (1982) A Class of New Exact Solutions in General Relativity. Journal of Physics A: Mathematical and General, 15, 2637.
https://doi.org/10.1088/0305-4470/15/8/039
[13]  Nariai, S. (1950) On Some Static Solutions of Einstein’s Gravitational Field Equations in a Spherically Symmetric Case. Science Reports of the Tohoku University Series, 134, 160.
[14]  Goldman, S.P. (1978) Physical Solutions to General-Relativistic Fluid Sphere. The Astrophysical Journal, 226, 1079.
https://doi.org/10.1086/156684
[15]  Ivanov, B.V. (2012) Collapsing Shear-Free Perfect Fluid Spheres with Heat Flow. General Relativity and Gravitation , 44, 1835-1855.
https://doi.org/10.1007/s10714-012-1370-3
[16]  Ivanov, B.V. (2002) Static Charged Perfect Fluid Spheres in General Relativity. Physical Review D, 65, Article ID: 104001.
https://doi.org/10.1103/physrevd.65.104001
[17]  Pant, N. (2011) Some New Exact Solutions with Finite Central Parameters and Uniform Radial Motion of Sound. Astrophysics and Space Science, 331, 633-644.
https://doi.org/10.1007/s10509-010-0453-4
[18]  Maurya, S.K. and Gupta, Y.K. (2013) Charged Fluid to Anisotropic Fluid Distribution in General Relativity. Astrophysics and Space Science, 344, 243-251.
https://doi.org/10.1007/s10509-012-1302-4
[19]  Pant, N., Fuloria, P. and Tewari, B.C. (2012) A New Well Behaved Exact Solution in General Relativity for Perfect Fluid. Astrophysics and Space Science, 340, 407-412.
https://doi.org/10.1007/s10509-012-1068-8
[20]  Pant, N., Fuloria, P. and Pradhan, N. (2014) An Exact Solution of Perfect Fluid in Isotropic Coordinates, Compatible with Relativistic Modeling of Star. International Journal of Theoretical Physics, 53, 993-1002.
https://doi.org/10.1007/s10773-013-1892-9
[21]  Herrera, L., Santos, N.O. and Wang, A. (2008) Shearing Expansion-Free Spherical Anisotropic Fluid Evolution. Physical Review D, 78, Article ID: 084026.
[22]  Herrera, L., Ospino, J. and Perisco, A.D. (2008) All Static Spherically Symmetric Anisotropic Solutions of Einstein’s Equations. Physical Review D, 77, Article ID: 027502.
https://doi.org/10.1103/PhysRevD.77.027502
[23]  Komathiraj, K. and Maharaj, S.D. (2007) Tikekar Superdense Stars in Electric Fields. Journal of Mathematical Physics, 48, Article ID: 042501.
https://doi.org/10.1063/1.2716204
[24]  Thirukkanesh, S. and Regel, F.C. (2012) Exact Anisotropic Sphere with Polytropic Equation of State. Pramana-Journal of Physics, 78, 687-696.
[25]  Sunzu, J.M., Maharaj, S.D. and Ray, S. (2014) Charged Anisotropic Models for Quark Stars. Astrophysics and Space Science, 352, 719-727.
https://doi.org/10.1007/s10509-014-1918-7
[26]  Chaisi, M. and Maharaj, S.D. (2006) Anisotropic Static Solutions in Modelling Highly Compact Bodies. Pramana—Journal of Physics, 66, 609.
https://doi.org/10.1007/BF02704504
[27]  Maurya, S.K. and Gupta, Y.K. (2012) A Family of Anisotropic Super-Dense Star Models Using a Space-Time Describing Charged Perfect Fluid Distributions. Physica Scripta, 86, Article ID: 025009.
https://doi.org/10.1088/0031-8949/86/02/025009
[28]  Gupta, Y.K. and Maurya, S.K. (2011) A Class of Regular and Well Behaved Relativistic Super-Dense Star Models. Astrophysics and Space Science, 332, 155-162.
https://doi.org/10.1007/s10509-010-0503-y
[29]  Fuloria, P., Tewari, B.C. and Joshi, B.C. (2011) Well Behaved Class of Charge Analogue of Durgapal’s Relativistic Exact Solution. Journal of Modern Physics, 2, 1156-1160.
https://doi.org/10.4236/jmp.2011.210143
[30]  Whitman, P.G. and Burch, R.C. (1981) Charged Spheres in General Relativity. Physical Review D, 24, 2049.
https://doi.org/10.1103/PhysRevD.24.2049
[31]  Bonner, W.B. and Vickers, P.A. (1981) Junction Conditions in General Relativity. General Relativity and Gravitation, 13, 29-36.
[32]  Pant, N. and Negi, P.S. (2012) Variety of Well Behaved Exact Solutions of Einstein-Maxwell Field Equations: An Application to Strange Quark Stars, Neutron Stars and Pulsars. Astrophysics and Space Science, 338, 163-169.
https://doi.org/10.1007/s10509-011-0919-z
[33]  Herrera, L. and Santos, N.O. (1997) Local Anisotropy in Self-Gravitating Systems. Physics Reports, 286, 53-130.
https://doi.org/10.1016/S0370-1573(96)00042-7
[34]  Tikekar, R. (1984) Spherical Charged Fluid Distributions in General Relativity. Journal of Mathematical Physics, 25, 1481-1483.
https://doi.org/10.1063/1.526318
[35]  Gupta, Y.K. and Kumar, M. (2005) A Superdense Star Model as Charged Analogue of Schwarzschild’s Interior Solution. General Relativity and Gravitation, 37, 575-583.
https://doi.org/10.1007/s10714-005-0043-x
[36]  Herrera, L., Ospino, J., Di Parisco, A., Fuenmayor, E. and Triconis, O. (2009) Structure and Evolution of Self-Gravitating Objects and the Orthogonal Splitting of the Riemann Tensor. Physical Review D, 79, Article ID: 064025.
https://doi.org/10.1103/PhysRevD.79.064025
[37]  Herrera, L., Di Parisco, A., Hernandez, P. and Santos, N.O. (2004) Dynamics of Dissipative Gravitational Collapse. Physical Review D, 70, Article ID: 084004.
https://doi.org/10.1103/PhysRevD.70.084004
[38]  Herrera, L., Di Parisco, A., Hernandez, P. and Santos, N.O. (1998) On the Role of Density Inhomogeneity and Local Anisotropy in the Fate of Spherical Collapse. Physics Letters A, 237, 113-118.
https://doi.org/10.1016/S0375-9601(97)00874-8
[39]  Herrera, L., Santos, N.O. andWang, A.Z. (2008) Shearing Expansion-Free Spherical Anisotropic Fluid Evolution. Physical Review D, 78, 084026.
http://dx.doi.org/10.1103/PhysRevD.78.084026
[40]  Tewari, B.C. and Charan, K. (2015) Horizon Free Eternally Collapsing Anisotropic Radiating Star. Astrophysics and Space Science, 357, 107.
https://doi.org/10.1007/s10509-015-2335-2
[41]  Tewari, B.C. and Charan, K. (2014) Radiating Star, Shear-Free Gravitational Collapse without Horizon. Astrophysics and Space Science, 351, 613-617.
https://doi.org/10.1007/s10509-014-1851-9
[42]  Tewari, B.C., Charan, K. and Rani, J. (2016) Spherical Gravitational Collapse of Anisotropic Radiating Fluid Sphere. International Journal of Astronomy and Astrophysics, 6, 155-165.
[43]  Tewari, B.C. (2013) Collapsing Shear-Free Radiating Fluid Spheres. General Relativity and Gravitation, 45, 1547-1558.
https://doi.org/10.1007/s10714-013-1545-6
[44]  Ivanov, B.V. (2010) Evolving Spheres of Shear-Free Anisotropic Fluid. International Journal of Modern Physics A, 25, 3975-3991.
[45]  Ivanov, B.V. (2010) Evolving Spheres of Shear-Free Anisotropic Fluid. International Journal of Modern Physics A, 25, 3975-3991.
https://doi.org/10.1142/S0217751X10050202
[46]  Ivanov, B.V. (2011) Self-Gravitating Spheres of Anisotropic Fluid in Geodesic Flow. International Journal of Modern Physics D, 20, 319-334.
https://doi.org/10.1142/S0218271811018858
[47]  Ivanov, B.V. (2016) A Different Approach to Anisotropic Spherical Collapse with Shear and Heat Radiation. International Journal of Modern Physics D, 25, Article ID: 1650049.
https://doi.org/10.1142/S0218271816500498
[48]  Ivanov, B.V. (2016) All Solutions for Geodesic Anisotropic Spherical Collapse with Shear and Heat Radiation. Astrophysics and Space Science, 361, 18.
https://doi.org/10.1007/s10509-015-2603-1
[49]  Maurya, S.K. and Gupta, Y.K. (2014) A New Class of Relativistic Charged Anisotropic Super Dense Star Models. Astrophysics and Space Science, 353, 657-665.
[50]  Pant, N., Mehta, R.N., Pant, M.J. (2010) New Class of Regular and Well Behaved Exact Solutions in General Relativity. Astrophysics and Space Science, 330, 353-359.
https://doi.org/10.1007/s10509-010-0383-1
[51]  Pant, et al. (2011) Well Behaved Parametric Class of Exact Solutions of Einstein-Maxwell Field Equations in General Relativity. Journal of Modern Physics, 2, 1538-1543.
https://doi.org/10.4236/jmp.2011.212186

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133