In this paper, we obtain some new characterizations of the range symmetric matrices in the Minkowski Space M by using the Block representation of the matrices. These characterizations are used to establish some results on the partial ordering of the range symmetric matrices with respect to the Minkowski adjoint. Further, we establish some results regarding the partial ordering of m-projectors with respect to the Minkowski adjoint and manipulate them to characterize some sets of range symmetric elements in the Minkowski Space M. All the results obtained in this paper are an extension to the Minkowski space of those given by A. Hernandez, et al. in [The star partial order and the eigenprojection at 0 on EP matrices, Applied Mathematics and Computation, 218: 10669-10678, 2012].
References
[1]
Gohberg, I., Lancaster, P. and Rodman, L. (2005) Indefinite Linear Algebra and Applications. Birkhauser, Verlag, Basel, Boston, Berlin.
[2]
Meenakshi, A.R. (2000) Generalized Inverse of Matrices in Minkowski Space. Proceedings of National Seminar on Algebra and Its Applications, 1, 1-14.
[3]
Meenakshi, A.R. (2000) Range Symmetric Matrices in Minkowski Space. Bulletin of the Malaysian Mathematical Sciences Society, 23, 45-52.
[4]
Meenakshi, A.R. and Krishnaswamy, D. (2006) Product of Range Symmetric Block Matrices in Minkowski Space. Bulletin of the Malaysian Mathematical Sciences Society, 29, 59-68.
[5]
Lone, M.S. and Krishnaswamy, D. (2016) m-Projections Involving Minkowski Inverse and Range Symmetric Property in Minkowski Space. Journal of Linear and Topological Algebra.
[6]
Krishnaswamy, D. (2005) Contributions to the Study on Range Symmetric Matrices in Minkowski Space. Ph.D. Dissertation, Annamalai University, India.
[7]
Ben-Isreal, A. and Greville, T. (2003) Generalized Inverse: Theory and Applications. 2nd Edition, Springer Verlag, New York.
[8]
Campbell, S.L. and Meyer Jr., C.D. (1991) Generalized Inverse of Linear Transformations. 2nd Edition, Dover, New York.
[9]
Prasolov, V.V. (1994) Problems and Theorems in Linear Algebra. American Mathematical Society, Providence.
[10]
Meyer, C.D. (2000) Matrix Analysis and Applied Linear Algebra. SIAM, Philadelphia. https://doi.org/10.1137/1.9780898719512
[11]
Mitra, S.K., Bhimasankaram, P. and Malik, S.B. (2010) Matrix Partial Orders, Shorted Operators and Applications. World Scientific Publishing Company, Singapore.
[12]
Rao, C.R. and Mitra, S.K. (1971) Generalized Inverse of Matrices and Its Applications. John Wiley & Sons, New York.
[13]
Tosic, M. and Cvetkovic-Ilic, D.S. (2012) Invertibility of a Linear Combination of Two Matrices and Partial Orderings. Applied Mathematics and Computation, 218, 4651-4657. https://doi.org/10.1016/j.amc.2011.10.052
[14]
Malik, S.B. (2013) Some More Properties of Core Partial Order. Applied Mathematics and Computation, 221, 192-201. https://doi.org/10.1016/j.amc.2013.06.012
[15]
Malik, S.B., Ruedab, L. and Thome, N. (2014) Further Properties on the Core Partial Order and Other Matrix Partial Orders. Linear Multilinear Algebra, 62, 1629-1648. https://doi.org/10.1080/03081087.2013.839676
[16]
Baksalary, J.K. and Mitra, S.K. (1991) Left-Star and Right-Star Partial Orderings. Linear Algebra and Its Applications, 149, 73-89. https://doi.org/10.1016/0024-3795(91)90326-R
[17]
Deng, C.Y. and Wang, S.Q. (2012) On Some Characterizations of the Partial Orderings for Bounded Operators. Mathematical Inequalities & Applications, 15, 619-630. https://doi.org/10.7153/mia-15-54
[18]
Liu, F.X. and Yang, H. (2011) Some Results on the Partial Orderings of Block Matrices. Journal of Inequalities and Applications, 2011, 1-7. https://doi.org/10.1186/1029-242x-2011-54
[19]
Mitra, S.K. (1987) On Group Inverses and the Sharp Order. Linear Algebra and Its Applications, 92, 17-37. https://doi.org/10.1016/0024-3795(87)90248-5
[20]
Baksalary, J.K., Hauke, J. and Styan, G.P.H. (1994) On Some Distributional Properties of Quadratic Forms in Normal Variables and on Some Associated Matrix Partial Orderings. Multivariate Analysis and Its Applications, 24, 111-121.
[21]
Baksalary, J.K. and Puntanen, S. (1990) Characterizations of the Best Linear Unbiased Estimator in the General Gauss Markov Model with the Use of Matrix Partial Orderings. Linear Algebra and Its Applications, 127, 363-370. https://doi.org/10.1016/0024-3795(90)90349-H
[22]
Puntanen, S. and Styan, G.P.H. (2015) Best Linear Unbiased Estimation in Linear Models (Version 8). StatProb: The Encyclopedia Sponsored by Statistics and Probability Societies.
[23]
Stepniak, C. (1987) Ordering of Nonnegative Definite Matrices with Application to Comparison of Linear Models. Linear Algebra and Its Applications, 70, 67-71. https://doi.org/10.1016/0024-3795(85)90043-6
[24]
Drazin, M.P. (1978) Natural Structures on Semi Groups with Involution. Bulletin American Mathematical Society, 84, 139-141. https://doi.org/10.1090/S0002-9904-1978-14442-5
[25]
Hartwig, R.E. (1980) How to Partially Order Regular Elements? Japanese Journal of Mathematics, 25, 1-13.
[26]
Punithavalli, G. (2014) Contributions to the Study on Various Solutions of the Matrix Equation AXB=C in Minkowski Space M. PhD Dissertation, Annamalai University, Annamalai Nagar.
[27]
Hernnandez, A., Lattanzi, M., Thome, N. and Urquiza, F. (2012) The Star Partial Order and the Eigenprojection at 0 on EP Matrices. Applied Mathematics and Computation, 218, 10669-10678. https://doi.org/10.1016/j.amc.2012.04.034