Recently, velocity prediction and modeling have been focus of the geophysical exploration in the high temperature and high pressure of the south China sea area, especially for new offshore exploratory areas. The error is large with great difficulty owing to fewer exploratory wells and misunderstanding. Firstly, on the basis of three typical velocity prediction and modeling examples in Ying-Qiong basin, it’s easy to put forward the corresponding not common but urgent problem in each instance, then combined with the velocity problem and misunderstanding to expand method discussion and solution, which include geological model to guide the velocity interpretation and analysis, the establishment of forward velocity of the auxiliary model explaining and constructing high precision velocity model. This research basically solves existing velocity problems in gas exploration of south China sea in recent years, and proposes corresponding solution and application, which is of great significance to the further exploration and productive practice.
References
[1]
Chen, X.-R. (1991) An Analysis of Exploration Prospects of YingDong Structure Belt in Yinggehai Basin. Natural Gas Industry, 19, 31-34.
[2]
He, J.-X., Xian, Z.-Y., Yang, X.-B. and Mao, Y.-X. (2001) Petroleum Geology and Current Exploration Trend in YingDong Slope Area, Yinggehai Basin, South China Sea. China Offshore Oil and Gas (Geology), 15, 242-248.
[3]
He, J.-X., Xia, B., Zhang, S.-L. and Sun, D.-S. (2006) Migration-Accumulation of Gas under the Abnaormal High Geotemperature and Superpressure Circumstance in Yinggehai Basin. Marine Geology & Quaternary Geology, 26, 81-89.
[4]
Li, L., Song, H.-B. and Yang, J.-H. (2006) A Preliminary Study of Seafloor Gas Seepage in Central Sag Zone of Yinggehai Basin. Progress in Geophysics, 21, 1244-1247.
[5]
Chen, Y., Wei, Y. and Ge, Y. (2004) Multiple Reflection Analysis and Rejection in L Depression of East China Sea. China Offshore Oil and Gas (Geology), 16, 373-376.
[6]
Hao, F., Dong, W.-H., Zou, H.-Y. and Yang, X.-S. (2003) Overpressure Fluid Flow and Rapid Accumulation of Natural Gas in Yinggehai Basin. Acta Petrolei Sinica, 24, 7-12.
[7]
Cai, G. and Qu, Z.-Y. (2005) Study of Seismic Data Velocity and Mapping Method in Complicated Structure Area and Its Application. Natural Gas Geoscience, 16, 246-249.
[8]
Liu, A.-Q., Tong, C.-X. and Li, L. (2008) Research of Velocity Analysis Method and Analysis of Velocity Influence Factors in the East Slope of Yinggehai Basin. Progress in Geophysics, 23, 1909-1917.
[9]
Liu, J.-P., Yang, Y.-Q. and Li, X.-Z. (1999) The Method for Extracting Velocity Under the Complex Topographic Condition and its Analysis. Geophysical and Geochemical Exploration, 23, 259-264.
[10]
Liu, Q.-F. (2003) Analysis and Application of the Velocity in Imaging of Seismic Data and Mapping of Structure. Journal of Jianghan Petroleum University of Staff and Workers, 17, 52-54.
[11]
Liu, T.-Y., Li, Y.-S. and Shi, X.-M. (1995) Geopressure Prediction and Evaluation Methods and its Application in Yinggehai Basin. China Offshore Oil and Gas (Geology), 9, 333-339.
[12]
He, J.-X., Li, M.-X. and Huang, B.-J. (2000) The Analysis of the Oil and Gas Exploration Prospect and the Distribution of Outflow of Oil and Gas in the Northern Slope of the Yinggehai Basin. Natural Gas Geoscience, 11, 1-9.
[13]
Meng, Q.-S., Chu, X.-F., Guo, X.-J., Fan, Y.-Q. and Jia, Y.-G. (2007) The Application of High Resolution Seismic Data Processing Technique in Multi-Channel Shallow Offshore Engineering Seismic Surveys. Progress in Geophysics, No. 3, 1006-1010.
[14]
Tian, S.-C., Chen, Y.-J. and Shi, F.-C. (2004) The Role of Abnormal Pressure Compartment in Oil and Gas Accumulation. Earth Science Frontiers, 11, 283-284.
[15]
Xie, R.-J., Zhu, G.-S. and Qi, J.-F. (2003) Application of Sonic Logging in Average Velocity Field. Journal of Southwest Petroleum Institute, 25, 9-12.
[16]
Wang, L.-M. and Li, Q.-C. (2006) Improving the Accuracy of Converted-Wave Velocity Analysis with Selected-Correlation Method. Progress in Geophysics, 21, 1213-1220.