|
Pure Mathematics 2016
Riordan阵与广义λ-Array Type多项式恒等式
|
Abstract:
[1] | Comtet, L. (1974) Advanced Combinatorics. D. Reidel Publishing Co., Dordrecht.
http://dx.doi.org/10.1007/978-94-010-2196-8 |
[2] | Luo, Q.M. and Srivastava, H.M. (2011) Some Generalizations of the Appostol—Genocchhi Polynomials and the Stirling Numbers of the Second Kind. Applied Mathematics and Computation, 217, 5702-5728.
http://dx.doi.org/10.1016/j.amc.2010.12.048 |
[3] | Simsek, Y. (2013) Generating Functions for Generalized Stirling Type Numbers, Array Type Polynomials, Eulerian Type Polynomials and Their Applications. Fix Point Theory and Applications, 28 p. |
[4] | Chang, C.H. and Ha, C.W. (2006) A Multiplication Theorem for the Lerch Zeta Function and Explicit Representations of the Bernoulli and Euler Polynomials. Journal of Mathematical Analysis and Applications, 315, 758-767.
http://dx.doi.org/10.1016/j.jmaa.2005.08.013 |
[5] | Simsek, Y. (2011) Interpolation Function of Generalized q-Bernstein Type Polynomials and Their Application. Lecture Notes in Computer Science, 6920, 647-662. http://dx.doi.org/10.1007/978-3-642-27413-8_43 |
[6] | 马兴辰, 乌云高娃. 特征多项式的性质及推广[D]: [硕士学位论文]. 呼和浩特: 内蒙古大学, 2014. |
[7] | 王天明. 近代组合学[M]. 大连: 大连理工大学出版社, 2008. |
[8] | Wang, W.P. and Wang, T.M. (2008) Generalized Riordan Arrays. Discrete Mathematics, 308, 6466-6500.
http://dx.doi.org/10.1016/j.disc.2007.12.037 |
[9] | Roman, S. (1984) Umbral Calculus. Academic Press, Inc., New York. |