|
集成式位置敏感聚类方法
|
Abstract:
[1] | Cao, Y. and Wu, J. (2002) Projective ART for Clustering Data Sets in High Dimensional Spaces. Neural Networks, 15, 105-120. |
[2] | Agrawal, R., Gehrke, J., Gunopulos, D. and Raghavan, P. (1998) Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications. Proceedings of SIGMOD Record ACM Special Interest Group on Management of Data, 94-105. http://dx.doi.org/10.1145/276304.276314 |
[3] | Schclara, A., Rokachb, L. and Amit, A. (2013) Ensembles of Classifiers Based on Dimensionality Reduction. Pattern Analysis and Applications Journal, 5, 1305-4345. |
[4] | Dasgupta, S. and Sinha, K. (2013) Randomized Partition Trees for Exact Nearest Neighbor Search. Proceedings of Workshop and Conference Proceedings, 30, 1-21. |
[5] | Baraniuk, R.G., Davenport, M., De Vore, R. and Wakin, M.B. (2008) A Simple Proof of the Restricted Isometry Principle for Random Matrices. Constructive Approximation, 28, 253-263. |
[6] | Fowler, J.E. and Du, Q. (2012) Anomaly Detection and Reconstruction from Random Projections. IEEE Transaction on Image Processing, 21, 184-195. |
[7] | Schulman, L.J. (2000) Clustering for Edge-Cost Minimization. Proceedings of Annual ACM Symposium Theory of Computing, 547-555. |
[8] | Balcan, M.-F., Blum, A. and Vempala, S. (2006) Kernels as Features: On Kernels, Margins, and Low-Dimensional Mappings. Machine Learning, 65, 79-94. |
[9] | Shi, Q., Petterson, J., Dror, G., Langford, J., Smola, A.J. and Vishwanathan, S.V.N. (2009) Hash Kernels for Structured Data. Journal of Machine Learning Research, 10, 2615-2637. |
[10] | Andoni and Indyk, P. (2008) Near-Optimal Hashing Algorithms for Approximate Nearest Neighbor in High Dimensions. Communications of the ACM, 51, 117-122. |
[11] | Jegou, H., Douze, M. and Schmid, C. (2010) Improving Bag-of-Features for Large Scale Image Search. International Journal of Computer Vision, 87, 316-336. http://dx.doi.org/10.1007/s11263-009-0285-2 |
[12] | Liu, Z., Liu, T. and David, G. (2010) Effective and Scalable Video Copy Detection. Proceedings of the ACM SIGMM International Conference on Multimedia Information Retrieval, ACM, New York, 119-128. |
[13] | Ravichandran, D., Pantel, P. and Hovy, E. (2005) Randomized Algorithms and NLP: Using Locality Sensitive Hash Function for High Speed Noun Clustering. Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, Stroudsburg, 622-629. http://dx.doi.org/10.3115/1219840.1219917 |
[14] | Blum, A. (2006) Random Projection, Margins, Kernels, and Fea-ture-Selection. Proceedings of the 2005 International Conference on Subspace, Latent Structure and Feature Selection, LNCS, 52-68. |
[15] | Shi, Q.F., Shen, C.H., Hill, R. and van den Hengel, A. (2012) Is Margin Preserved after Random Projection. Proceedings of International Conference on Machine Learning, Edinburgh. |
[16] | Pons, S.V. and Sulcloper, J.R. (2011) A Surver of Clustering Ensemble Algorithms. International Journal of Pattern Recognition and Artificial Intelligence, 25, 337-372. http://dx.doi.org/10.1142/S0218001411008683 |
[17] | Topchy, A.P., Jain, A.K. and Punch, W.F. (2005) Clustering Ensembles: Models of Consensus and Weak Partitions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27, 1866-1881.
http://dx.doi.org/10.1109/TPAMI.2005.237 |
[18] | Topchy, A., Minaei-Bidgoli, B., Jain, A.K. and Punch, W.F. (2004) Adaptive Clustering Ensembles. Proceedings of the 17th International Conference, Washington DC, 272–275. http://dx.doi.org/10.1109/icpr.2004.1334105 |
[19] | Strehl and Ghosh, J. (2002) Cluster Ensembles: A Knowledge Reuse Framework Multiple Partitions. Journal of Machine Learning Research, 583-617. |