|
自噬与ADPKD
|
Abstract:
[1] | Ravikumar, B., Sarkar, S., Davies, J.E., et al. (2010) Regulation of Mammalian Autophagy in Physiology and Pathophysiology. Physiological Reviews, 90, 1383-1435. http://dx.doi.org/10.1152/physrev.00030.2009 |
[2] | De Rechter, S., Decuypere, J., Ivanova, E., et al. (2015) Autophagy in Renal Diseases. Pediatric Nephrology, 1-16.
http://dx.doi.org/10.1007/s00467-015-3134-2 |
[3] | Huber, T.B., Edelstein, C.L., Hartleben, B., et al. (2014) Emerging Role of Autophagy in Kidney Function, Diseases and Aging. Autophagy, 8, 1009-1031. http://dx.doi.org/10.4161/auto.19821 |
[4] | Hotchkiss, R.S., Strasser, A., Mcdunn, J.E., et al. (2009) Cell Death. New England Journal of Medicine, 361, 1570- 1583. http://dx.doi.org/10.1056/NEJMra0901217 |
[5] | Kaushik, S. and Cuervo, A.M. (2012) Chaperone-Mediated Autophagy: A Unique Way to Enter the Lysosome World. Trends in Cell Biology, 22, 407-417. http://dx.doi.org/10.1016/j.tcb.2012.05.006 |
[6] | Li, W.W., Li, J. and Bao, J.K. (2012) Microautophagy: Lesser-Known Self-Eating. Cellular and Molecular Life Sciences, 69, 1125-1136. http://dx.doi.org/10.1007/s00018-011-0865-5 |
[7] | Torres, V.E., Harris, P.C. and Pirson, Y. (2007) Autosomal Dominant Polycystic Kidney Disease. Lancet, 369, 1287- 1301. http://dx.doi.org/10.1016/S0140-6736(07)60601-1 |
[8] | Kotsis, F., Boehlke, C. and Kuehn, E.W. (2013) The Ciliary Flow Sensor and Polycystic Kidney Disease. Nephrology Dialysis Transplantation, 28, 518-526. http://dx.doi.org/10.1093/ndt/gfs524 |
[9] | Ko, J.Y. and Park, J.H. (2013) Mouse Models of Polycystic Kidney Disease Induced by Defects of Ciliaryproteins. BMB Reports, 46, 73-79. http://dx.doi.org/10.5483/BMBRep.2013.46.2.022 |
[10] | Ong, A.C., Devuyst, O., Knebelmann, B., et al. (2015) Autosomal Dominant Polycystic Kidney Disease: The Changing Face of Clinical Management. Lancet, 385, 1993-2002. http://dx.doi.org/10.1016/S0140-6736(15)60907-2 |
[11] | Ravichandran, K. and Edelstein, C.L. (2014) Polycystic Kidney Disease: A Case of Suppressed Autophagy? Seminars in Nephrology, 34, 27-33. http://dx.doi.org/10.1016/j.semnephrol.2013.11.005 |
[12] | Leuenroth, S.J., Bencivenga, N., Chahboune, H., et al. (2010) Triptolide Reduces Cyst Formation in a Neonatal to Adult Transition Pkd1 Model of ADPKD. Nephrology Dialysis Transplantation, 25, 2187-2194.
http://dx.doi.org/10.1093/ndt/gfp777 |
[13] | Belibi, F., Zafar, I., Ravichandran, K., et al. (2011) Hypoxia-Inducible Factor-1 (HIF-1) and Autophagy in Polycystic Kidney Disease (PKD). AJP: Renal Physiology, 300, F1235-F1243. http://dx.doi.org/10.1152/ajprenal.00348.2010 |
[14] | Mizushima, N., Yoshimori, T. and Levine, B. (2010) Methods in Mammalian Autophagy Research. Cell, 140, 313-326.
http://dx.doi.org/10.1016/j.cell.2010.01.028 |
[15] | Bellot, G., Garcia-Medina, R., Gounon, P., et al. (2009) Hypoxia-Induced Autophagy Is Mediated through Hypoxia- Inducible Factor Induction of BNIP3 and BNIP3L via Their BH3 Domains. Molecular and Cellular Biology, 29, 2570- 2581. http://dx.doi.org/10.1128/MCB.00166-09 |
[16] | Bohensky, J., Shapiro, I.M., Leshinsky, S., et al. (2007) HIF-1 Regulation of Chondrocyte Apoptosis: Induction of the Autophagic Pathway. Autophagy, 3, 207-214. http://dx.doi.org/10.4161/auto.3708 |
[17] | Edelstein, C.L. (2005) What Is the Role of Tubular Epithelial Cell Apoptosis in Polycystic Kidney Disease (PKD)? Cell Cycle, 4, 1550-1554. http://dx.doi.org/10.4161/cc.4.11.2185 |
[18] | Tao, Y., Kim, J., Faubel, S., et al. (2005) Caspase Inhibition Reduces Tubular Apoptosis and Proliferation and Slows Disease Progression in Polycystic Kidney Disease. Proceedings of the National Academy of Sciences of the United States of America, 102, 6954-6959. http://dx.doi.org/10.1073/pnas.0408518102 |
[19] | Tao, Y., Zafar, I., Kim, J., et al. (2008) Caspase-3 Gene Deletion Prolongs Survival in Polycystic Kidney Disease. Journal of the American Society of Nephrology, 19, 749-755. http://dx.doi.org/10.1681/asn.2006121378 |
[20] | Veis, D.J, Sorenson, C.M., Shutter, J.R., et al. (1993) Bcl-2-Deficient Mice Demonstrate Fulminant Lymphoid Apoptosis, Polycystic Kidneys, and Hypopigmented Hair. Cell, 75, 229-240.
http://dx.doi.org/10.1016/0092-8674(93)80065-M |
[21] | Saeki, K., You, A., Okuma, E., et al. (2000) Bcl-2 Down-Regulation Causes Autophagy in a Caspase-Independent Manner in Human Leukemic HL60 Cells. Cell Death & Differentiation, 7, 1263-1269.
http://dx.doi.org/10.1038/sj.cdd.4400759 |
[22] | Tsujimoto, Y. and Shimizu, S. (2005) Another Way to Die: Autophagic Programmed Cell Death. Cell Death & Differentiation, 12, 1528-1534. http://dx.doi.org/10.1038/sj.cdd.4401777 |
[23] | Lin, H.H., Yang, T.P., Jiang, S.T., et al. (1999) Bcl-2 Overexpression Prevents Apoptosis-Induced Madin-Darby Canine Kidney Simple Epithelial Cyst Formation. Kidney International, 55, 168-178.
http://dx.doi.org/10.1046/j.1523-1755.1999.00249.x |
[24] | Bukanov, N.O., Smith, L.A., Klinger, K.W., et al. (2006) Long-Lasting Arrest of Murine Polycystic Kidney Disease with CDK Inhibitor Roscovitine. Nature, 444, 949-952. http://dx.doi.org/10.1038/nature05348 |
[25] | Boletta, A., Qian, F., Onuchic, L.F., et al. (2000) Polycystin-1, the Gene Product of PKD1, Induces Resistance to Apoptosis and Spontaneous Tubulogenesis in MDCK Cells. Molecular Cell, 6, 1267-1273.
http://dx.doi.org/10.1016/S1097-2765(00)00123-4 |
[26] | Rowe, I., Chiaravalli, M., Mannella, V., et al. (2013) Defective Glucose Metabolism in Polycystic Kidney Disease Identifies a New Therapeutic Strategy. Nature Medicine, 19, 488-493. http://dx.doi.org/10.1038/nm.3092 |
[27] | Zhou, F., Yang, Y. and Xing, D. (2011) Bcl-2 and Bcl-xL Play Important Roles in the Crosstalk between Autophagy and Apoptosis. FEBS Journal, 278, 403-413. http://dx.doi.org/10.1111/j.1742-4658.2010.07965.x |
[28] | Yu, L., Alva, A., Su, H., et al. (2004) Regulation of an ATG7-Beclin 1 Program of Autophagic Cell Death by Caspase-8. Science, 304, 1500-1502. http://dx.doi.org/10.1126/science.1096645 |
[29] | Giansanti, V., Torriglia, A. and Scovassi, A.I. (2011) Conversation between Apoptosis and Autophagy: “Is It Your Turn or Mine?” Apoptosis, 16, 321-333. http://dx.doi.org/10.1007/s10495-011-0589-x |
[30] | Kaushal, G.P., Kaushal, V., Herzog, C., et al. (2008) Autophagy Delays Apoptosis in Renal Tubular Epithelial Cells in Cisplatin Cytotoxicity. Autophagy, 4, 710-712. http://dx.doi.org/10.4161/auto.6309 |
[31] | Korolchuk, V.I. and Rubinsztein, D.C. (2011) Regulation of Autophagy by Lysosomal Positioning. Autophagy, 7, 927- 928. http://dx.doi.org/10.4161/auto.7.8.15862 |
[32] | Tao, Y., Kim, J., Schrier, R.W., et al. (2005) Rapamycin Markedly Slows Disease Progression in a Rat Model of Polycystic Kidney Disease. Journal of the American Society of Nephrology, 16, 46-51.
http://dx.doi.org/10.1681/ASN.2004080660 |
[33] | Shillingford, J.M., Piontek, K.B., Germino, G.G., et al. (2010) Rapamycin Ameliorates PKD Resulting from Conditional Inactivation of Pkd1. Journal of the American Society of Nephrology, 21, 489-497.
http://dx.doi.org/10.1681/asn.2009040421 |
[34] | Huber, T.B., Walz, G. and Kuehn, E.W. (2011) mTOR and Rapamycin in the Kidney: Signaling and Therapeutic Implications beyond Immunosuppression. Kidney International, 79, 502-511. http://dx.doi.org/10.1038/ki.2010.457 |
[35] | Zafar, I., Ravichandran, K., Belibi, F.A., et al. (2010) Sirolimus Attenuates Disease Progression in an Orthologous Mouse Model of Human Autosomal Dominant Polycystic Kidney Disease. Kidney International, 78, 754-761.
http://dx.doi.org/10.1038/ki.2010.250 |
[36] | Natoli, T.A., Smith, L.A., Rogers, K.A., et al. (2010) Inhibition of Glucosylceramide Accumulation Results in Effective Blockade of Polycystic Kidney Disease in Mouse Models. Nature Medicine, 16, 788-792.
http://dx.doi.org/10.1038/nm.2171 |
[37] | Walz, G., Budde, K., Mannaa, M., et al. (2010) Everolimus in Patients with Autosomal Dominant Polycystic Kidney Disease. The New England Journal of Medicine, 363, 830-840. http://dx.doi.org/10.1056/NEJMoa1003491 |
[38] | Belibi, F., Ravichandran, K., Zafar, I., et al. (2011) mTORC1/2 and Rapamycin in Female Han:SPRD Rats with Polycystic Kidney Disease. American Journal of Physiology—Renal Physiology, 300, F236-F244.
http://dx.doi.org/10.1152/ajprenal.00129.2010 |
[39] | Chresta, C.M., Davies, B.R., Hickson, I., et al. (2010) AZD8055 Is a Potent, Selective, and Orally Bioavailable ATP- Competitive Mammalian Target of Rapamycin Kinase Inhibitor with in Vitro and in Vivo Antitumor Activity. Cancer Research, 70, 288-298. http://dx.doi.org/10.1158/0008-5472.CAN-09-1751 |
[40] | Boehlke, C., Kotsis, F., Patel, V., et al. (2010) Primary Cilia Regulate mTORC1 Activity and Cell Size through Lkb1. Nature Cell Biology, 12, 1115-1122. http://dx.doi.org/10.1038/ncb2117 |
[41] | Pampliega, O., Orhon, I., Patel, B., et al. (2013) Functional Interaction between Autophagy and Ciliogenesis. Nature, 502, 194-200. http://dx.doi.org/10.1038/nature12639 |
[42] | Wang, S., Livingston, M.J., Su, Y., et al. (2015) Reciprocal Regulation of Cilia and Autophagy via the MTOR and Proteasome Pathways. Autophagy, 11, 607-616. http://dx.doi.org/10.1080/15548627.2015.1023983 |
[43] | Takakura, A., Nelson, E.A., Haque, N., et al. (2011) Pyrimethamine Inhibits Adult Polycystic Kidney Disease by Modulating STAT Signaling Pathways. Human Molecular Genetics, 20, 4143-4154.
http://dx.doi.org/10.1093/hmg/ddr338 |
[44] | Yu, W., Kong, T., Beaudry, S., et al. (2010) Polycystin-1 Protein Level Determines Activity of the Galpha12/JNK Apoptosis Pathway. The Journal of Biological Chemistry, 285, 10243-10251.
http://dx.doi.org/10.1074/jbc.M109.070821 |
[45] | Takiar, V., Nishio, S., Seo-Mayer, P., et al. (2011) Activating AMP-Activated Protein Kinase (AMPK) Slows Renal Cystogenesis. Proceedings of the National Academy of Sciences of the United States of America, 108, 2462-2467.
http://dx.doi.org/10.1073/pnas.1011498108 |
[46] | Mccarty, M.F., Barroso-Aranda, J. and Contreras, F. (2009) Activation of AMP-Activated Kinase as a Strategy for Managing Autosomal Dominant Polycystic Kidney Disease. Medical Hypotheses, 73, 1008-1010.
http://dx.doi.org/10.1016/j.mehy.2009.05.043 |
[47] | Cebotaru, V., Cebotaru, L., Kim, H., et al. (2014) Polycystin-1 Negatively Regulates Polycystin-2 Expression via the Aggresome/Autophagosome Pathway. Journal of Biological Chemistry, 289, 6404-6414.
http://dx.doi.org/10.1074/jbc.M113.501205 |
[48] | Parkhitko, A., Myachina, F., Morrison, T.A., et al. (2011) Tumorigenesis in Tuberous Sclerosis Complex Is Autophagy and p62/Sequestosome 1 (SQSTM1)-Dependent. Proceedings of the National Academy of Sciences of the United States of America, 108, 12455-12460. http://dx.doi.org/10.1073/pnas.1104361108 |
[49] | Turcotte, S., Chan, D.A., Sutphin, P.D., et al. (2008) A Molecule Targeting VHL-Deficient Renal Cell Carcinoma That Induces Autophagy. Cancer Cell, 14, 90-102. http://dx.doi.org/10.1016/j.ccr.2008.06.004 |