|
Biophysics 2015
ISW2缺失下基因功能对核小体定位影响的研究
|
Abstract:
[1] | Riccio, A. (2010) Dynamic Epigenetic Regulation in Neurons: Enzymes, Stimuli and Signaling Pathways. Nature Neuroscience, 13, 1330-1337. http://dx.doi.org/10.1038/nn.2671 |
[2] | Owen-Hughes, T. (2003) Colworth Memorial Lecture. Pathways for Remodeling Chromatin. Biochemical Society Transactions, 31, 893-905. http://dx.doi.org/10.1042/bst0310893 |
[3] | Cosma, M.P., Tanaka, T. and Nasmyth, K. (1999) Ordered Recruitment of Transcription and Chromatin Remodeling Factors to a Cell Cycle-and Developmentally Regulated Promoter. Cell, 97, 299-311.
http://dx.doi.org/10.1016/S0092-8674(00)80740-0 |
[4] | Narlikar, G.J., Fan, H.Y. and Kingston, R.E. (2002) Cooperation between Complexes That Regulate Chromatin Structure and Transcription. Cell, 108, 475-487. http://dx.doi.org/10.1016/S0092-8674(02)00654-2 |
[5] | Segal, E., Fondufe-Mittendorf, Y., Chen, L., Thastrom, A., Field, Y., Moore, I.K., Wang, J.P. and Widom, J. (2006) A Genomic Code for Nucleosome Positioning. Nature, 442, 772-778. http://dx.doi.org/10.1038/nature04979 |
[6] | Schones, D.E., Gui, K., Cuddapah, S., Roh, T.Y., Barski, A., Wang, Z., Wei, G. and Zhao, K. (2008) Dynamic Regulaton of Nucleosome Positioning in the Human Genome. Cell, 132, 887-898.
http://dx.doi.org/10.1016/j.cell.2008.02.022 |
[7] | Zhang, Z. and Pugh, B.F. (2001) High-Resolution Genome-Wide Mapping of the Primary Structure of Chromatin. Cell, 144, 175-186. http://dx.doi.org/10.1016/j.cell.2011.01.003 |
[8] | Luger, K. (2006) Dynamic Nucleosomes. Chromosome Research, 14, 5-16.
http://dx.doi.org/10.1007/s10577-005-1026-1 |
[9] | Bennett, G. and Peterson, C.L. (2015) SWI/SNF Recruitment to a DNA Double-Strand Break by the NuA4 and Gcn5 Histone Acetyltransferases. DNA Repair (Amst), 30, 38-45. http://dx.doi.org/10.1016/j.dnarep.2015.03.006 |
[10] | Kuangyu, Y., Vinesh, V., Kiran, B., Thomas, K.R. and Franklin, P.B. (2012) Genome-Wide Nucleosome Specificity and Directionality of Chromatin Remodelers. Cell, 149, 1461-1473. http://dx.doi.org/10.1016/j.cell.2012.04.036 |
[11] | Goldmark, J.P., Fazzio, T.G., Estep, P.W., et al. (2000) The Isw2 Chromatin Remodeling Complex Represses Early Meiotic Genes upon Recruitment by Ume6p. Cell, 103, 423-433. http://dx.doi.org/10.1016/S0092-8674(00)00134-3 |
[12] | Fazzio, T.G., Kooperberg, C., Goldmark, J.P., et al. (2001) Widespread Collaboration of Isw2 and Sin3-Rpd3 Chromatin Remodeling Complexes in Transcriptional Repression. Molecular and Cellular Biology, 21, 6450-6460.
http://dx.doi.org/10.1128/MCB.21.19.6450-6460.2001 |
[13] | Kent, N.A., Karabetsou, N., Politis, P.K. and Mellor, J. (2001) In Vivo Chromatin Remodeling by Yeast ISWI Homologs Isw1p and Isw2p. Genes & Development, 15, 619-626. http://dx.doi.org/10.1101/gad.190301 |
[14] | Shetty, A. and Lopes, J.M. (2010) Derepression of INO1 Transcription Requires Cooperation between the Ino2p-Ino4p Heterodimer and Cbf1p and Recruitment of the ISW2 Chromatin-Remodeling Complex. Eukaryotic Cell, 9, 1845-1855.
http://dx.doi.org/10.1128/EC.00144-10 |
[15] | Hota, S.K., Bhardwaj, S.K., Deindl, S., et al. (2013) Nucleosome Mobilization by ISW2 Requires the Concerted Action of the ATPase and SLIDE Domains. Nature Structural & Molecular Biology, 20, 222-229.
http://dx.doi.org/10.1038/nsmb.2486 |
[16] | Krajewski, W.A. (2013) Comparison of the Isw1a, Isw1b, and Isw2 Nucleosome Disrupting Activities. Biochemistry, 52, 6940-6949. http://dx.doi.org/10.1021/bi400634r |
[17] | Whitehouse, I., Rando, O.J., Delrow, J. and Tsukiyama, T. (2007) Chromatin Remodelling at Promoters Suppresses Antisense Transcription. Nature, 450, 1031-1036. http://dx.doi.org/10.1038/nature06391 |
[18] | Kaplan, N., Moore, I.K., Fondufe-Mittendorf, Y., Gossett, A.J., Tillo, D., Field, Y., Leproust, E.M., Hughes, T.R., Lieb, J.D., Widom, J. and Segal, E. (2009) The DNA-Encoded Nucleosome Organization of a Eukaryotic Genome. Nature, 458, 362-266. http://dx.doi.org/10.1038/nature07667 |
[19] | Feng, J., Dai, X., Xiang, Q., Dai, Z., Wang, J., Deng, Y. and He, C. (2010) New Insights into Two Distinct Nucleosome Distributions: Comparison of Cross-Platform Positioning Datasets in the Yeast Genome. BMC Genomics, 11, 463-468. http://dx.doi.org/10.1186/1471-2164-11-33 |
[20] | Brukner, I., Sanchez, R., Suck, D. and Pongor, S. (1995) Sequence-Dependent Bending Propensity of DNA as Revealed by DNase I: Parameters for Trinucleotides. The EMBO Journal, 14, 1812-1818. |