|
基于趋势预测模型的多目标分布估计算法
|
Abstract:
[1] | Ahmadi, M.H., et al. (2013) Thermo-Economic Multi-Objective Optimization of Solar Dish-Stirling Engine by Im-plementing Evolutionary Algorithm. Energy Conversion and Management, 73, 370-380. |
[2] | Ponsich, A., Jaimes, A.L. and Coello, C.A.C. (2013) A Survey on Multiobjective Evolutionary Algorithms for the Solution of the Portfolio Optimization Problem and Other Finance and Economics Applications. IEEE Transactions on Evolutionary Computation, 17, 321-344. http://dx.doi.org/10.1109/TEVC.2012.2196800 |
[3] | Mukhopadhyay, A., et al. (2014) Survey of Multi-Objective Evolutionary Algorithms for Data Mining: Part II. IEEE Transactions on Evolutionary Computation, 18, 20-35. |
[4] | Coello, C.A.C., Van Veldhuizen, D.A. and Lamont, G.B. (2002) Evolutionary Algorithms for Solving Multi-Objective Problems. Springer, Vol. 242. http://dx.doi.org/10.1007/978-1-4757-5184-0 |
[5] | Gong, M.-G., Jiao, L.-C., Yang, D.-D. and Ma, W.-P. (2009) Evolutionary Multi-Objective Optimization Algorithms.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.503.5879 |
[6] | Larranaga, P. and Lozano, J.A. (2002) Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation. Springer Science & Business Media, Vol. 2. http://dx.doi.org/10.1007/978-1-4615-1539-5 |
[7] | Khan, N., Goldberg, D.E. and Pelikan, M. (2002) Multi-Objective Bayesian Optimization Algorithm. Urbana, 51, 61801. |
[8] | Pelikan, M., Sastry, K. and Goldberg, D.E. (2005) Multiobjective hBOA, Clustering, and Scalability. Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation, ACM, New York, 663-670. |
[9] | Shah, R. and Reed, P. (2011) Comparative Analysis of Multiobjective Evolutionary Algorithms for Random and Correlated Instances of Multiobjective d-Dimensional Knapsack Problems. European Journal of Operational Research, 211, 466-479. http://dx.doi.org/10.1016/j.ejor.2011.01.030 |
[10] | Karshenas, H., Santana, R., Bielza, C. and Larranaga, P. (2014) Multiobjective Estimation of Distribution Algorithm Based on Joint Modeling of Objectives and Variables. IEEE Transactions on Evolutionary Computation, 18, 519-542. |
[11] | Zhang, Q.F., Zhou, A.M. and Jin, Y.C. (2008) RM-MEDA: A Regularity Model-Based Multiobjective Estimation of Distribution Algorithm. IEEE Transactions on Evolutionary Computation, 12, 41-63. |
[12] | Luis Mart′?, Jesús Garc′?a, Antonio Berlanga, Carlos A Coello Coello, Jos′ e M Molina. (2011) MB-GNG: Addressing Drawbacks in Multi-Objective Optimization Estimation of Distribution Algorithms. Operations Research Letters, 39, 150-154. http://dx.doi.org/10.1016/j.orl.2011.01.002 |
[13] | Costa, M. and Minisci, E. (2003) MOPED: A Multi-Objective Parzen-Based Estimation of Distribution Algorithm for Continuous Problems. Evolutionary Multi-Criterion Optimization. Springer, 282-294. |
[14] | Cheng, R., et al. (2015) A Multiobjective Evolutionary Algorithm Using Gaussian Process-Based Inverse Modeling. IEEE Transactions on Evolutionary Computation, 19, 838-856. http://dx.doi.org/10.1109/TEVC.2015.2395073 |
[15] | Zhou, L.H., Zhou, A.M., Zhang, G.X. and Shi, C. (2011) An Estimation of Distribution Algorithm Based on Nonparametric Density Estimation. IEEE Congress on Evolutionary Computation (CEC), 2011. IEEE, , 1597-1604. |
[16] | Lozano, J.A. (2006) Towards a New Evolutionary Computation: Advances on Estimation of Distribution Algorithms. Springer Science & Business Media, Netherlands, Vol. 192. |
[17] | Pelikan, M., Sastry, K. and Cantú-Paz, E. (2007) Scalable Optimization via Probabilistic Modeling: From Algorithms to Applications. Springer, Vol. 33. |
[18] | Larranaga, P., Karshenas, H., Bielza, C. and Santana, R. (2012) A Review on Probabilistic Graphical Models in Evolutionary Computation. Journal of Heuristics, 18, 795-819. |
[19] | Shah, R. and Reed, P. (2011) Comparative Analysis of Multiobjective Evolutionary Algorithms for Random and Correlated Instances of Multiobjective d-Dimensional Knapsack Problems. European Journal of Operational Research, 211, 466-479. http://dx.doi.org/10.1016/j.ejor.2011.01.030 |
[20] | Chen, C.-H. and Chen, Y.-P. (2007) Real-Coded ECGA for Economic Dispatch. Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, ACM, New York, 1920-1927.
http://dx.doi.org/10.1145/1276958.1277343 |
[21] | Bacardit, J., Stout, M., Hirst, J.D., Sastry, K., Llorà, X. and Krasnogor, N. (2007) Automated Alphabet Reduction Method with Evolutionary Algorithms for Protein Structure Prediction. Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, ACM, New York, 346-353 |
[22] | Rossi, C., Abderrahim, M. and Díaz, J.C. (2008) Tracking Moving Optimausing Kalman-Based Predictions. Evolutionary Computation, 16, 1-30. http://dx.doi.org/10.1162/evco.2008.16.1.1 |
[23] | Larranaga, P., Etxeberria, R., Lozano, J.A. and Pena, J.M. (2000) Optimization in Continuous Domains by Learning and Simulation of Gaussian Networks. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.3105 |
[24] | Helbig, M. and Engelbrecht, A. (2015) Benchmark Functions for cec 2015 Special Session and Competition on Dynamic Multi-objective Optimization. Tech. rep., Technical Report. |
[25] | Sierra, M.R. and Coello, C.A.C. (2005) Improving PSO-Based Multi-Objective Optimization Using Crowding, Mutation and I-Dominance. In: Evolutionary Multi-Criterion Optimization, Springer, 505-519. |
[26] | Jiang, M., Ding, Y., Goertzel, B., Huang, Z., Zhou, C. and Chao, F. (2014) Improving Machine Vision via Incorporating Expectation-Maximization into Deep Spatio-Temporal Learning. International Joint Conference on Neural Networks (IJCNN), Beijing, 6-11 July 2014, 1804-1811. |
[27] | Jiang, M., Huang, W., Huang, Z. and Yen, G.G. (2015) Integration of Global and Local Metrics for Domain Adaptation Learning Via Dimensionality Reduction. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7349204&tag=1 |
[28] | Zhan, Z.H., Liu, X.F., Gong, Y.J., Zhang, J., Chung, H.S.H. and Li, Y. (2015) Cloud Computing Resource Scheduling and a Survey of Its Evolutionary Approaches. ACM Computing Surveys (CSUR), 47, 63.
http://dx.doi.org/10.1145/2788397 |
[29] | Jiang, M., Yu, Y., Liu, X., Zhang, F. and Hong, Q. (2012) Fuzzy Neural Network Based Dynamic Path Planning. International Conference on Machine Learning and Cybernetics (ICMLC), Xi’an, 15-17 July 2012, Vol. 1, 326-330. |
[30] | Chao, F., Chen, F., Shen, Y., He, W., Sun, Y., Wang, Z., Jiang, M., et al. (2014) Robotic Free Writing of Chinese Characters via Human-Robot Interactions. International Journal of Humanoid Robotics, 11, 1450007.
http://dx.doi.org/10.1142/S0219843614500078 |
[31] | Chao, F., Lee, M.H., Jiang, M. and Zhou, C. (2014) An Infant Development-Inspired Approach to Robot Hand-Eye Coordination. International Journal of Advanced Robotic Systems, 11, 1-14. http://dx.doi.org/10.5772/57555 |
[32] | Jiang, M., Zhou, C. and Chen, S. (2010) Embodied Concept Formation and Reasoning via Neural-Symbolic Integration. Neurocomputing, 74, 113-120. http://dx.doi.org/10.1016/j.neucom.2009.11.052 |
[33] | Jiang, M., Yu, Y., Chao, F., Shi, M. and Zhou, C. (2013) A Connectionist Model for 2-Dimensional Modal Logic. IEEE Symposium on Computational Intelligence for Hu-man-Like Intelligence (CIHLI), Singapore, 16-19 April 2013, 54-59. |
[34] | Wu, Y., Jiang, M., Huang, Z., Chao, F. and Zhou, C. (2015) An NP-Complete Fragment of Fibring Logic. Annals of Mathematics and Artificial Intelligence, 75, 391-417. http://dx.doi.org/10.1007/s10472-015-9468-4 |
[35] | Cai, Z., Goertzel, B., Zhou, C., Huang, D., Ke, S., Yu, G. and Jiang, M. (2013) OpenPsi: A Novel Computational Affective Model and Its Application in Video Games. Engineering Applications of Artificial Intelligence, 26, 1-12.
http://dx.doi.org/10.1016/j.engappai.2012.07.013 |
[36] | Cai, Z., Goertzel, B., Zhou, C., Zhang, Y., Jiang, M. and Yu, G. (2012) Dynamics of a Computational Affective Model Inspired by D?rner’s Psi Theory. Cognitive Systems Research, 17, 63-80.
http://dx.doi.org/10.1016/j.cogsys.2011.11.002 |