全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于m序列的压缩感知测量矩阵构造
Construction of Compressed Sensing Matrixs Based on m Sequences

DOI: 10.12677/HJWC.2016.62008, PP. 52-60

Keywords: 压缩感知,测量矩阵,m序列,RIP,列相关性
Compressed Sensing
, Measurement Matrix, m Sequences, RIP, Column Correlation

Full-Text   Cite this paper   Add to My Lib

Abstract:

测量矩阵作为压缩感知理论的核心内容,对信号的测量和重构会产生重大影响。本文主要基于m序列构造压缩感知测量矩阵。首先,给出一种压缩率为0.5的测量矩阵构造方法,利用该方法构造的测量矩阵元素取值集合较小,具有一定的循环特性。其次,结合有限域的理论,对利用m序列构造的测量矩阵做进一步改进,改进后测量矩阵的压缩率取值范围增大加。仿真结果表明:本文构造的测量矩阵的重构性能优于同大小的Gause测量矩阵,避免了随机性测量矩阵的不确定性,具有一定实用价值。
The measurement matrix as the core of the compressed sensing theory, will have a significant im-pact on the measurement and reconstruction. This paper produces a method of compressed sensing measurement matrix through the m sequences. First of all, it gives a method to construct the measurement matrix with compression rate is 0.5; this measurement matrix has small element set and certain cycle characteristics. Secondly, for combining the theory of finite fields, the measure-ment matrix based on m sequence is further improved. The compression rate of the matrix mea-surement range is greatly increased. The simulation results show that the measurement matrix is constructed in this paper which is better than Gause measurement matrix reconstruction perfor-mance of the same size, avoids the random measurement matrix uncertainty and has a certain practical value.

References

[1]  Candès, E., Romberg, J. and Tao, T. (2006) Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information. IEEE Transactions on Information Theory, 52, 489-509.
http://dx.doi.org/10.1109/TIT.2005.862083
[2]  Candès, E. and Tao, T. (2006) Near Optimal Signal Recovery from Random Projections: Universal Encoding Strategies. IEEE Transactions on Information Theory, 52, 5406-5425.
[3]  Candès, E. and Romberg, J. (2006) Quantitative Robust Uncertainty Principles and Optimally Sparse Decompositions. Foundations of Computational Mathematics, 6, 227-254.
http://dx.doi.org/10.1007/s10208-004-0162-x
[4]  Donoho, D.L. (2006) Compressed Sensing. IEEE Transactions on Information Theory, 52, 1289-1306.
[5]  Candès, E. and Tao, T. (2005) Decoding by Linear Programming. IEEE Transactions on Information Theory, 51, 4203-4215.
http://dx.doi.org/10.1109/TIT.2005.858979
[6]  Gribonval, R. and Nielsen, M. (2003) Sparse Representations in Unions of Bases. IEEE Transactions on Information Theory, 49, 3320-3325.
http://dx.doi.org/10.1109/TIT.2003.820031
[7]  Bourgain, J., Dilworth, S.J., Ford, K., et al. (2011) Explicit Constructions of RIP Matrices and Related Problems. Duke Mathematical Journal, 159, 145-185.
http://dx.doi.org/10.1215/00127094-1384809
[8]  De Vore, R. (2007) Deterministic Constructions of Compressed Sensing Matrices. Journal of Complexity, 23, 918-925.
http://dx.doi.org/10.1016/j.jco.2007.04.002
[9]  林斌, 彭玉楼. 基于混沌序列的压缩感知测量矩阵构造算法[J]. 计算机工程与应用, 2013, 49(23): 199-202.
[10]  王侠, 王开, 王青云, 等. 压缩感知中的确定性随机观测矩阵构造[J]. 信号处理, 2014, 30(4): 436-442.
[11]  臧华中. 基于Logistic混沌–贝努力序列的循环压缩测量矩阵构造算法[J]. 四川理工学院学报(自然科学版), 2015, 28(5): 31-36.
[12]  粟娟, 李智, 李健. 基于切比雪夫扩频序列的测量矩阵构造算法[J]. 四川大学学报(工程科学版), 2015, 47(2): 155-160.
[13]  赵瑞珍, 王若乾, 张凤珍, 等. 分块的有序范德蒙矩阵作为压缩感知测量矩阵的研究[J]. 电子与信息学报, 2015, 37(6): 1317-1322.
[14]  Ni, K., Datta, S., Mahanti, P., et al. (2011) Efficient Deterministic Compressed Sensing for Images with Chirps and Reed-Muller Codes. SIAM Journal on Imaging Sciences, 4, 931-953.
http://dx.doi.org/10.1137/100808794
[15]  Dimakis, A.G., Smarandache, R. and Vontobel, P.O. (2012) LDPC Codes for Compressed Sensing. IEEE Transactions on Information Theory, 58, 3093-3114.
http://dx.doi.org/10.1109/TIT.2011.2181819
[16]  Ge, X. and Xia, S.T. (2006) LDPC Codes Based on Berlekamp-Justesen Codes with Large Stopping Distances. Preceedings of IEEE Information Theory Workshop (ITW), Chengdu, 214-218.
[17]  许志强. 压缩感知[J]. 中国科学, 2012, 42(9): 865-877.
[18]  Candès, E., Romberg, J. and Tao, T. (2006) Stable Signal Recovery from Incomplete and Inaccurate Measurements. Communications on Pure and Applied Mathematics, 59, 1207-1223.
http://dx.doi.org/10.1002/cpa.20124
[19]  Welch, L.R. (1974) Lower Bounds on the Maximum Cross-Correlation of Signals. IEEE Transactions on Information Theory, 20, 397-399.
http://dx.doi.org/10.1109/TIT.1974.1055219
[20]  曾凡鑫, 葛利嘉. 无线通信中的序列设计原理[M]. 北京: 国防工业出版社, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133