|
Pure Mathematics 2016
第一类多环芳香烃的广义度距离和维纳相关指数
|
Abstract:
[1] | Wiener, H. (1947) Structural Determination of Paraffin Boiling Points. American Chemical Society, 69, 17-20.
http://dx.doi.org/10.1021/ja01193a005 |
[2] | Hosoya, H. (1988) On Some Counting Polynomials in Chemistry. Discrete Applied Mathematics, 19, 239-257.
http://dx.doi.org/10.1016/0166-218X(88)90017-0 |
[3] | Schultz, H.P. (1989) Topological Organic Chemistry 1. Graph Theory and Topological Indices of Alkanes. Journal of Chemical Information and Modeling, 29, 227-228. http://dx.doi.org/10.1021/ci00063a012 |
[4] | Klav?ar, S. and Gutman, I. (1997) Wiener Number of Vertex-Weighted Graphs and a Chemical Application. Discrete Applied Mathematics, 80, 73-81. http://dx.doi.org/10.1016/S0166-218X(97)00070-X |
[5] | Iranmanesh, A. and Alizadeh, Y. (2009) Computing Hyper-Wiener and Schultz Indices of TUZ6[p.q] Nanotube by Gap Program. Digest Journal of Nanomaterials and Bi-ostructures, 4, 607-611. |
[6] | Iranmanesh, A. and Alizadeh, Y. (2009) Computing Szeged and Schultz Indices of HAC5C7C9[p,q] Nanotube by Gap Program, Digest. Nanomaterials and Biostructures, 4, 67-72. |
[7] | Alizadeh, Y., Iranmanesh, A. and Mirzaie, S. (2009) Computing Schultz Polynomial, Schultz Index of C60 Fullerene by Gap Program. Digest Journal of Nanomaterials and Biostructures, 4, 7-10. |
[8] | Eliasi, M. and Taeri, B. (2008) Schultz Polynomials of Composite Graphs. Applicable Analysis and Discrete Mathematics, 2, 285-296. http://dx.doi.org/10.2298/AADM0802285E |
[9] | Halakoo, O., Khormali, O. and Mahmiani, A. (2009) Bounds for Schultz Index of Pentachains, Digest. Nanomaterials and Biostructures, 4, 687-691. |
[10] | Heydari, A. (2010) On the Modified Schultz Index of C4C8(S) Nanotubes. Digest Journal of Nanomaterials and Biostructures, 5, 51-56. |
[11] | Farahani, M.R. (2013) Zagreb Indices and Zagreb Polynomials of Polycyclic Aromatic Hydrocarbons. Chimica Acta, 2, 70-72. |
[12] | Huber, S.E., Mauracher, A. and Probst, M. (2003) Permeation of Low-Z Atoms through Carbon Sheets: Density Functional Theory Study on Energy Barriers and Deformation Effects. Chem. Eur., 9, 2974-2981. |
[13] | Jug, K. and Bredow, T. (2004) Models for the Treatment of Crystalline Solids and Surfaces. Compu-tational Chemistry, 25, 1551-1567. http://dx.doi.org/10.1002/jcc.20080 |
[14] | Farahani, M.R. (2013) Some Con-nectivity Indices of Polycyclic Aromatic Hydrocarbons (PAHs). Submitted for Publish. |
[15] | Brunvoll, J., Cyvin, B.N. and Cyvin, S.J. (1987) Enumeration and Classification of Benzenoid Hydrocarbons. Symmetry and Regular Hexagonal Benzenoids. Journal of Chemical Information and Modeling, 27, 171-177.
http://dx.doi.org/10.1021/ci00056a006 |
[16] | Dias, J.R. (1996) From Benzenoid Hydrocarbons to Fullerene Carbons. MATCH Communications in Mathematical and in Computer Chemistry, 4, 57-85. |
[17] | Diudea, M.V. (2005) Nano Porous Carbon Allotropes by Septupling Map Operations. Journal of Chemical Information and Modeling, 45, 1002-1009. http://dx.doi.org/10.1021/ci050054y |
[18] | Dress, A. and Brinkmann, G. (1996) Phantasmagorical Fulleroids. MATCH Communications in Mathematical and in Computer Chemistry, 33, 87-100. |
[19] | Gutman, I. and Klav?ar, S. (1996) A Method for Calculationg Wiener Numbers of Benzenoid Hydrocarbons and Phenylenes. ACH Models Chem., 133, 389-399. |
[20] | Klav?ar, S. (2008) A Bird’s Eye View of the Cut Method and a Survey of Its Ap-plications in Chemical Graph Theory. MATCH Communications in Mathematical and in Computer Chemistry, 60, 255-274. |