|
Pure Mathematics 2016
关于完全π-正则半群分块定义的一个注记
|
Abstract:
[1] | Shevrin, L.N. (1995) On the Theory of Epigroups, I. Russian Academy of Sciences. Sbornik Mathematics, 82, 485-512.
http://dx.doi.org/10.1070/sm1995v082n02abeh003577 |
[2] | Shevrin, L.N. (1995) On the Theory of Epigroups, II. Russian Academy of Sciences. Sbornik Mathematics, 83, 133-154.
http://dx.doi.org/10.1070/sm1995v083n01abeh003584 |
[3] | Shevrin, L.N. (2005) Epigroups. In: Kudravtsev, V.B. and Rosenberg, I.G., Eds., Structural Theory of Automata, Semigroups, and Universal Algebra, Springer, Berlin, 331-380. http://dx.doi.org/10.1007/1-4020-3817-8_12 |
[4] | Liu, J.G. (2014) A Relation on the Congruence Lattice of an Epigroup. Advances in Mathematics (China), 43, 498-504. |
[5] | Liu, J.G. (2013) Epigroups in which the Operation of Taking Pseudo-Inverse Is an Endomorphism. Semigroup Forum, 87, 627-638. |
[6] | Liu, J.G. (2013) Epigroups in which the Relation of Having the Same Pseudo-Inverse Is a Congruence. Semigroup Forum, 87, 187-200. http://dx.doi.org/10.1007/s00233-012-9462-7 |
[7] | Liu, J.G. (2015) Epigroups in which the Idempotent-Generated Subsemigroups Are Completely Regular. Journal of Mathematical Research with Applications (China), 35, 529-542. |
[8] | Liu, J.G., Chen, Q.Q. and Han C.M. (2016) Locally Completely Regular Epigroups. Communications in Algebra. |
[9] | Graham, R.L. (1968) On Finite 0-Simple Semigroups and Graph Theory. Mathematical Systems Theory, 2, 325-339.
http://dx.doi.org/10.1007/bf01703263 |
[10] | Margolis, S.W. and Pin, J.-E. (1985) Product of Group Languages. FCT Conference, Lecture Notes in Computer Science, 199, 285-299. http://dx.doi.org/10.1007/bfb0028813 |
[11] | Pin, J.-E. (1995) PG = BG: A Success Story. In: Fountain J., Ed., NATO Advanced Study Institute Semigroups, Formal Languages and Groups, Kluwer Academic, Dordrecht, 33-47. http://dx.doi.org/10.1007/978-94-011-0149-3_2 |
[12] | Almeida, J. (1994) Finite Semigroups and Universal Algebra (English Translation). World Scientific, Singapore. |
[13] | Rhodes, J. and Steinberg, B. (2009) The q-Theory of Finite Semigroups. Springer, New York.
http://dx.doi.org/10.1007/b104443 |
[14] | Moura, A. (2012) E-Local Pseudovarieties. Semigroup Forum, 85, 169-181.
http://dx.doi.org/10.1007/s00233-012-9413-3 |
[15] | Clifford, A.H. and Preston G.B. (1961) The Algebraic Theory of Semigroups, Vol. I, Mathematical Surveys, No.7. American Mathematical Society, Providence. |
[16] | Clifford, A.H. and Preston G.B. (1967) The Algebraic Theory of Semigroups, Vol. II, Mathematical Surveys, No.7. American Ma-thematical Society, Providence. |
[17] | Grillet, P.A. (1995) Semigroups: An Introduction to the Structure Theory, Mo-nographs and Textbooks in Pure and Applied Mathematics, Vol. 193. Marcel Dekker Inc., New York. |
[18] | Higgins, P.M. (1992) Techniques of Semigroup Theory. Oxford University Press, Oxford. |
[19] | Howie, J.M. (1995) Fundamen-tals of Semigroup Theory. Clarendon, Oxford. |