全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

关于完全π-正则半群分块定义的一个注记
A Note on the Definitions of Blocks of Epigroups

DOI: 10.12677/PM.2016.62013, PP. 89-94

Keywords: 完全π-正则半群,分块,正则D-类
Epigroup
, Block, Regular D-Class

Full-Text   Cite this paper   Add to My Lib

Abstract:

完全π-正则半群是其所含任意元的某个幂属于其最大子群的半群。论文给出了两个不同形式的半群分块的定义,证明当所给半群为完全π-正则半群时这两个定义是等价的。论文还提供了分块的第三个定义,证明当分块为子半群时,完全π-正则半群的第三个分块定义与前两者等价。
A semigroup is called an epigroup if for any element in this semigroup some power of the element lies in the maximal subgroup of the given semigroup. In this paper two variants of definitions of blocks of semigroups are given and we prove that two of them turn out to coincide in the case of epigroups. We also offer the third definition of blocks of epigroups and show that if blocks of epi-groups are subsemigroups, then this definition is equivalent to the other two.

References

[1]  Shevrin, L.N. (1995) On the Theory of Epigroups, I. Russian Academy of Sciences. Sbornik Mathematics, 82, 485-512.
http://dx.doi.org/10.1070/sm1995v082n02abeh003577
[2]  Shevrin, L.N. (1995) On the Theory of Epigroups, II. Russian Academy of Sciences. Sbornik Mathematics, 83, 133-154.
http://dx.doi.org/10.1070/sm1995v083n01abeh003584
[3]  Shevrin, L.N. (2005) Epigroups. In: Kudravtsev, V.B. and Rosenberg, I.G., Eds., Structural Theory of Automata, Semigroups, and Universal Algebra, Springer, Berlin, 331-380.
http://dx.doi.org/10.1007/1-4020-3817-8_12
[4]  Liu, J.G. (2014) A Relation on the Congruence Lattice of an Epigroup. Advances in Mathematics (China), 43, 498-504.
[5]  Liu, J.G. (2013) Epigroups in which the Operation of Taking Pseudo-Inverse Is an Endomorphism. Semigroup Forum, 87, 627-638.
[6]  Liu, J.G. (2013) Epigroups in which the Relation of Having the Same Pseudo-Inverse Is a Congruence. Semigroup Forum, 87, 187-200.
http://dx.doi.org/10.1007/s00233-012-9462-7
[7]  Liu, J.G. (2015) Epigroups in which the Idempotent-Generated Subsemigroups Are Completely Regular. Journal of Mathematical Research with Applications (China), 35, 529-542.
[8]  Liu, J.G., Chen, Q.Q. and Han C.M. (2016) Locally Completely Regular Epigroups. Communications in Algebra.
[9]  Graham, R.L. (1968) On Finite 0-Simple Semigroups and Graph Theory. Mathematical Systems Theory, 2, 325-339.
http://dx.doi.org/10.1007/bf01703263
[10]  Margolis, S.W. and Pin, J.-E. (1985) Product of Group Languages. FCT Conference, Lecture Notes in Computer Science, 199, 285-299.
http://dx.doi.org/10.1007/bfb0028813
[11]  Pin, J.-E. (1995) PG = BG: A Success Story. In: Fountain J., Ed., NATO Advanced Study Institute Semigroups, Formal Languages and Groups, Kluwer Academic, Dordrecht, 33-47.
http://dx.doi.org/10.1007/978-94-011-0149-3_2
[12]  Almeida, J. (1994) Finite Semigroups and Universal Algebra (English Translation). World Scientific, Singapore.
[13]  Rhodes, J. and Steinberg, B. (2009) The q-Theory of Finite Semigroups. Springer, New York.
http://dx.doi.org/10.1007/b104443
[14]  Moura, A. (2012) E-Local Pseudovarieties. Semigroup Forum, 85, 169-181.
http://dx.doi.org/10.1007/s00233-012-9413-3
[15]  Clifford, A.H. and Preston G.B. (1961) The Algebraic Theory of Semigroups, Vol. I, Mathematical Surveys, No.7. American Mathematical Society, Providence.
[16]  Clifford, A.H. and Preston G.B. (1967) The Algebraic Theory of Semigroups, Vol. II, Mathematical Surveys, No.7. American Ma-thematical Society, Providence.
[17]  Grillet, P.A. (1995) Semigroups: An Introduction to the Structure Theory, Mo-nographs and Textbooks in Pure and Applied Mathematics, Vol. 193. Marcel Dekker Inc., New York.
[18]  Higgins, P.M. (1992) Techniques of Semigroup Theory. Oxford University Press, Oxford.
[19]  Howie, J.M. (1995) Fundamen-tals of Semigroup Theory. Clarendon, Oxford.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133