In this paper, we introduce the following quattuordecic functional equation f(x+7y)-14f(x+6y)+91f(x+5y)-364f(x+4y)+1001f(x+3y)-2002f(x+2y)+3003f(x+y)-3432f(x)+3003f(x-y)-2002f(x-2y)+1001f(x-3y)-364f(x-4y)+91f(x-5y)-14f(x-6y)+f(x-7y)=14!f(y), investigate the general solution and prove the stability of this quattuordecic functional equation in quasi β-normed spaces by using the fixed point method.
References
[1]
Ulam, S.M. (1960) A Collection of Mathematical Problems. Interscience Publ., New York.
[2]
Hyers, D.H. (1941) On the Stability of the Linear Functional Equation. Proceedings of the National Academy of Sciences of the United States of America, 27, 222-224. https://doi.org/10.1073/pnas.27.4.222
[3]
Rassias, T.M. (1978) On the Stability of the Linear Mappings in Banach Spaces. Proceedings of the American Mathematical Society, 72, 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
[4]
Aoki, T. (1950) On the Stability of the Linear Transformation in Banach Spaces. Journal of the Mathematical Society of Japan, 2, 64-66. https://doi.org/10.2969/jmsj/00210064
[5]
Chang, I.S. and Kim, H.M. (2002) On the Hyers-Ulam Stability of Quadratic Functional Equations. Journal of Inequalities in Pure and Applied Mathematics, 27, Article 33.
[6]
Czerwik, S. (2002) Functional Equations and Inequalities in Several Variables. World Scientific, River Edge. https://doi.org/10.1142/4875
[7]
Eskandani, G.S., Guvruta, P., Rassias, J.M. and Zarghami, R. (2011) Generalized Hyers-Ulam Stability for a General Mixed Functional Equation in Quasi-Beta Normed Spaces. Mediterranean Journal of Mathematics, 8, 331-348. https://doi.org/10.1007/s00009-010-0082-8
[8]
Guvruta, P. (1999) An Answer to a Question of J. M. Rassias Concerning the Sability of Cauchy Functional Equation. In: Advances in Equations and Inequalities, Hardronic Math. Ser., Hadronic Press, Palm Harbor, 67-71.
[9]
Guvruta, P. (2001) On a Problem of G. Issac and Th. M. Rassias Concerning the Stability of Mappings. Journal of Mathematical Analysis and Applications, 261, 543-553. https://doi.org/10.1006/jmaa.2001.7539
[10]
Hyers, D.H., Issac, G. and Rassias, T.M. (1998) Stability of Functional Equations in Several Variables. Birkhauser, Basel. https://doi.org/10.1007/978-1-4612-1790-9
[11]
Jung, S.M. (2001) Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis. Hadronic Press, Palm Harbor.
[12]
Kannapan, P. (1995) Quadratic Functional Equation and Inner Product Spaces. Results in Mathematics, 27, 368-372. https://doi.org/10.1007/BF03322841
[13]
Rassias, J.M. (1984) On Approximately of Approximately Linear Mappings by Linear Mappings. Bulletin des Sciences Mathématiques, 108, 445-446.
[14]
Rassias, J.M. and Kim, H.M. (2009) Generalized Hyers-Ulam Stability for General Additive Functional Equation in Quasi Beta Normed Spaces. Journal of Mathematical Analysis and Applications, 356, 302-309. https://doi.org/10.1016/j.jmaa.2009.03.005
[15]
Ravi, K., Narasimman, P. and Kishore Kumar, R. (2009) Generalized Hyers-Ulam-Rassias Stability and J. M. Rassias Stability of a Quadratic Functional Equation. International Journal of Mathematical Sciences and Industrial Applications, 3, 79-94.
[16]
Ravi, K., Kodandan, R. and Narasimman, P. (2009) Ulam Stability of a Quadratic Functional Equations. International Journal of Pure and Applied Mathematics, 51, 87-101.
[17]
Xu, T., Rassias, J.M. and Xu, W.X. (2011) A Fixed Point Approach to the Stability of a General Mixed Type Additive-Cubic Functional Equation in Quasi Fuzzy Normed Spaces. International Journal of Physical Sciences, 6, 313-324.
[18]
Xu, T., Rassias, J.M. and Xu, W.X. (2010) A Fixed Point Approach to the Stability of Quintic and Sextic Functional Equations in Quasi-β Normed Spaces. Journal of Inequalities and Applications, 2010, Article ID: 423231. https://doi.org/10.1155/2010/423231
[19]
Rassias, J.M. and Eslamian, M. (2015) Fixed Point and Stability of Nonic Functional Equation in Quasi-Beta Normed Spaces. Contemporary Analysis and Applied Mathematics, 3, 293-309. https://doi.org/10.18532/caam.38853
[20]
Ravi, K., Rassias, J.M., Pinelas, S. and Sabarinathan, S. (2015) A Fixed Point Approach to the Stability of Decic Functional Equation in Quasi-Beta Normed Spaces. Panamerican Mathematical Journal, 25, 42-52.