Numerous studies have demonstrated a relationship between the extracellular matrix protein BIGH3 and variations in the malignant properties of different cancer cell types, including osteosarcoma cells. BIGH3 protein can suppress and promote tumor growth, even on the same cancer cell type, indicating that contextual cues regulate BIGH3-mediated divergent outcomes. We employed a multicellular tumor spheroid model to study the effects of BIGH3 with respect to physical and molecular features of three-dimensional tumor growth. The results demonstrated that exogenous recombinant BIGH3 blocked the development of multicellular large tumor spheroids so that only small spheroids formed. The effect was dependent on the BIGH3 concentration in the growth medium and the time of incubation of BIGH3 with the osteosarcoma cells in the spheroid model. TGF-β1 signaling induced multicellular tumor spheroids to synthesize a greater quantity of BIGH3 relative to non-treated spheroids. The TGF-β1-mediated increase in BIGH3 protein antagonized the development of multicellular large spheroids. Anti-BIGH3 antibody, and an inhibitor of TGF-β1 signaling, blocked the antagonistic effect induced through TGF-β1 stimulation and BIGH3 protein expression, resulting in the formation of multicellular large spheroids. Immunohistochemistry detected BIGH3 at cell bodies within the spheroid stroma, suggesting osteosarcoma cell-surface proteins bind BIGH3. Flow cytometry demonstrates that osteosarcoma cells interact with soluble BIGH3, and solid-phase cell adhesion assays show that osteosarcoma adhesion to BIGH3 substratum is mediated by integrin α4β1. However, anti-α4 antibody did not attenuate the BIGH3-mediated antagonism toward formation of multicellular large spheroids. We conclude that TGFβ1 and BIGH3 suppress the development of large osteosarcoma tumors.
References
[1]
Sutherland, R.M. (1988) Cell and Environment Interactions in Tumor Microregions: The Multicell Spheroid Model. Science, 240, 177-184. http://dx.doi.org/10.1126/science.2451290
[2]
Haycock, J.W. (2011) 3d Cell Culture: A Review of Current Approaches and Techniques. Methods in Molecular Biology, 695, 1-15. http://dx.doi.org/10.1007/978-1-60761-984-0_1
[3]
Lee, J., Cuddihy, M.J. and Kotov, N.A. (2008) Three-Dimensional Cell Culture Matrices: State of the Art. Tissue Engineering Part B: Reviews, 14, 61-86. http://dx.doi.org/10.1089/teb.2007.0150
[4]
Pampaloni, F., Reynaud, E.G. and Stelzer, E.H. (2007) The Third Dimension Bridges the Gap between Cell Culture and Live Tissue. Nature Reviews Molecular Cell Biology, 8, 839-845. http://dx.doi.org/10.1038/nrm2236
[5]
Mueller-Klieser, W., Freyer, J.P. and Sutherland, R.M. (1986) Influence of Glucose and Oxygen Supply Conditions on the Oxygenation of Multicellular Spheroids. British Journal of Cancer, 53, 345-353. http://dx.doi.org/10.1038/bjc.1986.58
[6]
Desoize, B., Gimonet, D. and Jardiller, J.C. (1998) Cell Culture as Spheroids: An Approach to Multicellular Resistance. Anticancer Research, 18, 4147-4158.
[7]
Nederman, T., Norling, B., Glimelius, B., Carlsson, J. and Brunk, U. (1984) Demonstration of an Extracellular Matrix in Multicellular Tumor Spheroids. Cancer Research, 44, 3090-3097.
[8]
Skonier, J., Neubauer, M., Madisen, L., Bennett, K., Plowman, G.D. and Purchio, A.F. (1992) cDNA Cloning and Sequence Analysis of Beta Ig-H3, a Novel Gene Induced in a Human Adenocarcinoma Cell Line after Treatment with Transforming Growth Factor-β. DNA and Cell Biology, 11, 511-522. http://dx.doi.org/10.1089/dna.1992.11.511
[9]
Skonier, J., Bennett, K., Rothwell, V., Kosowski, S., Plowman, G., Wallace, P., Edelhoff, S., Disteche, C., Neubauer, M., Marquardt, H., et al. (1994) Beta Ig-H3: A Transforming Growth Factor-β-Responsive Gene Encoding a Secreted Protein That Inhibits Cell Attachment in Vitro and Suppresses the Growth of CHO Cells in Nude Mice. DNA and Cell Biologyl, 13, 571-584. http://dx.doi.org/10.1089/dna.1994.13.571
[10]
Zhang, Y., Wen, G., Shao, G., Wang, C., Lin, C., Fang, H., Balajee, A. S., Bhagat, G., Hei, T. K. and Zhao, Y. (2009) TGFBI Deficiency Predisposes Mice to Spontaneous Tumor Development. Cancer Research, 69, 37-44. http://dx.doi.org/10.1158/0008-5472.CAN-08-1648
[11]
Zamilpa, R., Rupaimoole, R., Phelix, C.F., Somaraki-Cormier, M., Haskins, W., Asmis, R. and LeBaron, R.G. (2009) C-Terminal Fragment of Transforming Growth Factor-β-Induced Protein (TGFBIp) Is Required for Apoptosis in Human Osteosarcoma Cells. Matrix Biology, 28, 347-353. http://dx.doi.org/10.1016/j.matbio.2009.05.004
[12]
Shah, J.N., Shao, G., Hei, T.K. and Zhao, Y. (2008) Methylation Screening of the TGFBI Promoter in Human Lung and Prostate Cancer by Methylation-Specific PCR. BMC Cancer, 8, 284. http://dx.doi.org/10.1186/1471-2407-8-284
[13]
Wen, G., Hong, M., Li, B., Liao, W., Cheng, S.K., Hu, B., Calaf, G.M., Lu, P., Partridge, M. A., Tong, J. and Hei, T.K. (2011) Transforming Growth Factor-β-Induced Protein (TGFBI) Suppresses Mesothelioma Progression through the Akt/mTOR Pathway. International Journal of Oncology, 39, 1001-1009.
[14]
Zhao, Y., El-Gabry, M. and Hei, T.K. (2006) Loss of Betaig-H3 Protein Is Frequent in Primary Lung Carcinoma and Related to Tumorigenic Phenotype in Lung Cancer Cells. Molecular Carcinogenesis, 45, 84-92. http://dx.doi.org/10.1002/mc.20167
[15]
Zhao, Y.L., Piao, C.Q. and Hei, T.K. (2002) Downregulation of Betaig-H3 Gene Is Causally Linked to Tumorigenic Phenotype in Asbestos Treated Immortalized Human Bronchial Epithelial Cells. Oncogene, 21, 7471-7477. http://dx.doi.org/10.1038/sj.onc.1205891
[16]
Kang, S., Dong, S.M. and Park, N.H. (2010) Frequent Promoter Hypermethylation of TGFBI in Epithelial Ovarian Cancer. Gynecologic Oncology, 118, 58-63. http://dx.doi.org/10.1016/j.ygyno.2010.03.025
[17]
Wang, N., Zhang, H., Yao, Q., Wang, Y., Dai, S. and Yang, X. (2012) TGFBI Promoter Hypermethylation Correlating with Paclitaxel Chemoresistance in Ovarian Cancer. Journal of Experimental and Clinical Cancer Research, 31, 6. http://dx.doi.org/10.1186/1756-9966-31-6
[18]
Ween, M.P., Lokman, N.A., Hoffmann, P., Rodgers, R.J., Ricciardelli, C. and Oehler, M.K. (2011) Transforming Growth Factor-β-Induced Protein Secreted by Peritoneal Cells Increases the Metastatic Potential of Ovarian Cancer Cells. International Journal of Cancer, 128, 1570-1584. http://dx.doi.org/10.1002/ijc.25494
[19]
Wen, G., Partridge, M.A., Li, B., Hong, M., Liao, W., Cheng, S.K., Zhao, Y., Calaf, G.M., Liu, T., Zhou, J., Zhang, Z. and Hei, T.K. (2011) TGFBI Expression Reduces in Vitro and in Vivo Metastatic Potential of Lung and Breast Tumor Cells. Cancer Letters, 308, 23-32. http://dx.doi.org/10.1016/j.canlet.2011.04.010
[20]
Son, H.N., Nam, J.O., Kim, S. and Kim, I.S. (2013) Multiple FAS1 Domains and the RGD Motif of TGFBI Act Cooperatively to Bind αvβ3 Integrin, Leading to Anti-Angiogenic and Anti-Tumor Effects. Biochimica et Biophysica Acta, 1833, 2378-2388. http://dx.doi.org/10.1016/j.bbamcr.2013.06.012
[21]
Guo, Y.S., Zhao, R., Ma, J., Cui, W., Sun, Z., Gao, B., He, S., Han, Y.H., Fan, J., Yang, L., Tang, J. and Luo, Z.J. (2014) Betaig-H3 Promotes Human Osteosarcoma Cells Metastasis by Interacting with Integrin α2β1 and Activating PI3K Signaling Pathway. PLoS ONE, 9, e90220. http://dx.doi.org/10.1371/journal.pone.0090220
[22]
Ma, C., Rong, Y., Radiloff, D.R., Datto, M.B., Centeno, B., Bao, S., Cheng, A.W., Lin, F., Jiang, S., Yeatman, T.J. and Wang, X.F. (2008) Extracellular Matrix Protein Betaig-H3/ TGFBI Promotes Metastasis of Colon Cancer by Enhancing Cell Extravasation. Genes & Development, 22, 308-321. http://dx.doi.org/10.1101/gad.1632008
[23]
Tomioka, H., Morita, K., Hasegawa, S. and Omura, K. (2006) Gene Expression Analysis by cDNA Microarray in Oral Squamous Cell Carcinoma. Journal of Oral Pathology & Medicine, 35, 206-211. http://dx.doi.org/10.1111/j.1600-0714.2006.00410.x
[24]
Wong, F.H., Huang, C.Y., Su, L.J., Wu, Y.C., Lin, Y.S., Hsia, J.Y., Tsai, H.T., Lee, S.A., Lin, C.H., Tzeng, C.H., Chen, P.M., Chen, Y.J., Liang, S.C., Lai, J.M. and Yen, C.C. (2009) Combination of Microarray Profiling and Protein-Protein Interaction Databases Delineates the Minimal Discriminators as a Metastasis Network for Esophageal Squamous Cell Carcinoma. International Journal of Oncology, 34, 117-128.
[25]
Ma, J., Cui, W., He, S.M., Duan, Y.H., Heng, L.J., Wang, L. and Gao, G.D. (2012) Human U87 Astrocytoma Cell Invasion Induced by Interaction of Betaig-H3 with Integrin α5β1 Involves Calpain-2. PLoS ONE, 7, e37297. http://dx.doi.org/10.1371/journal.pone.0037297
[26]
Ahmed, A.A., Mills, A.D., Ibrahim, A.E., Temple, J., Blenkiron, C., Vias, M., Massie, C.E., Iyer, N.G., McGeoch, A., Crawford, R., Nicke, B., Downward, J., Swanton, C., Bell, S.D., Earl, H.M., Laskey, R.A., Caldas, C. and Brenton, J.D. (2007) The Extracellular Matrix Protein TGFBI Induces Microtubule Stabilization and Sensitizes Ovarian Cancers to Paclitaxel. Cancer Cell, 12, 514-527. http://dx.doi.org/10.1016/j.ccr.2007.11.014
[27]
Irigoyen, M., Pajares, M.J., Agorreta, J., Ponz-Sarvise, M., Salvo, E., Lozano, M.D., Pio, R., Gil-Bazo, I. and Rouzaut, A. (2010) TGFBI Expression Is Associated with a Better Response to Chemotherapy in NSCLC. Molecular Cancer, 9, 130. http://dx.doi.org/10.1186/1476-4598-9-130
[28]
Margadant, C. and Sonnenberg, A. (2010) Integrin-TGF-β Crosstalk in Fibrosis, Cancer and Wound Healing. EMBO Reports, 11, 97-105. http://dx.doi.org/10.1038/embor.2009.276
[29]
Wipff, P.J. and Hinz, B. (2008) Integrins and the Activation of Latent Transforming Growth Factor β1—An Intimate Relationship. European Journal of Cell Biology, 87, 601-615. http://dx.doi.org/10.1016/j.ejcb.2008.01.012
[30]
Skonier, J., Bennett, K., Rothwell, V., Kosowski, S., Plowman, G., Wallace, P., Edelhoff, S., Disteche, C., Neubauer, M., Marquardt, H., Rodgers, J. and Purchio, A.F. (1994) Beta Ig-H3: A Transforming Growth Factor-β-Responsive Gene Encoding a Secreted Protein That Inhibits Cell Attachment in Vitro and Suppresses the Growth of CHO Cells in Nude Mice. DNA & Cell Biology, 13, 571-584. http://dx.doi.org/10.1089/dna.1994.13.571
[31]
Ferguson, J.W., Thoma, B.S., Mikesh, M.F., Kramer, R.H., Bennett, K.L., Purchio, A., Bellard, B.J. and LeBaron, R.G. (2003) The Extracellular Matrix Protein Betaig-H3 Is Expressed at Myotendinous Junctions and Supports Muscle Cell Adhesion. Cell & Tissue Research, 313, 93-105. http://dx.doi.org/10.1007/s00441-003-0743-z
[32]
LeBaron, R.G., Bezverkov, K.I., Zimber, M.P., Pavelec, R., Skonier, J. and Purchio, A.F. (1995) Beta Ig-H3, a Novel Secretory Protein Inducible by Transforming Growth Factor-β, Is Present in Normal Skin and Promotes the Adhesion and Spreading of Dermal Fibroblasts in Vitro. Journal of Investigative Dermatology, 104, 844-849. http://dx.doi.org/10.1111/1523-1747.ep12607024
[33]
O’Brien, E.R., Bennett, K.L., Garvin, M.R., Zderic, T.W., Hinohara, T., Simpson, J.B., Kimura, T., Nobuyoshi, M., Mizgala, H., Purchio, A. and Schwartz, S.M. (1996) Beta Ig-H3, a Transforming Growth Factor-β-Inducible Gene, Is Overexpressed in Atherosclerotic and Restenotic Human Vascular Lesions. Arteriosclerosis Thrombosis and Vascular Biology, 16, 576-584. http://dx.doi.org/10.1161/01.ATV.16.4.576
[34]
Rawe, I.M., Zhan, Q., Burrows, R., Bennett, K. and Cintron, C. (1997) Beta-Ig: Molecular Cloning and in Situ Hybridization in Corneal Tissues. Investigative Ophthalmology & Visual Science, 38, 893-900.
[35]
Hamilton, G. (1998) Multicellular Spheroids as an in Vitro Tumor Model. Cancer Letters, 131, 29-34. http://dx.doi.org/10.1016/S0304-3835(98)00198-0
[36]
Korff, T. and Augustin, H.G. (1998) Integration of Endothelial Cells in Multicellular Spheroids Prevents Apoptosis and Induces Differentiation. Journal of Cell Biology, 143, 1341-1352. http://dx.doi.org/10.1083/jcb.143.5.1341
[37]
Yuhas, J.M., Li, A.P., Martinez, A.O. and Ladman, A.J. (1977) A Simplified Method for Production and Growth of Multicellular Tumor Spheroids. Cancer Research, 37, 3639-3643.
[38]
Perrot-Applanat, M., Groyer-Picard, M.T., Lorenzo, F., Jolivet, A., Vu Hai, M.T., Pallud, C., Spyratos, F. and Milgrom, E. (1987) Immunocytochemical Study with Monoclonal Anti-bodies to Progesterone Receptor in Human Breast Tumors. Cancer Research, 47, 2652-2661.
[39]
Lisignoli, G., Monaco, M.G., Toneguzzi, S., Bertollini, V., Cattini, L. and Facchini, A. (1995) FACS Analysis of Osteosarcoma Cell Line (MG-63) Integrin Subfamilies. Bollettino della Società Italiana di Biologia Sperimentale, 71, 309-315.
[40]
Durand, R.E. (1990) Multicell Spheroids as a Model for Cell Kinetic Studies. Cell & Tissue Kinetics, 23, 141-159.
[41]
Enmon Jr., R.M., O’Connor, K.C., Lacks, D.J., Schwartz, D.K. and Dotson, R.S. (2001) Dynamics of Spheroid Self-Assembly in Liquid-Overlay Culture of Du 145 Human Prostate Cancer Cells. Biotechnology and Bioengineering, 72, 579-591. http://dx.doi.org/10.1002/1097-0290(20010320)72:6<579::AID-BIT1023>3.0.CO;2-L
[42]
Santini, M.T. and Rainaldi, G. (1999) Three-Dimensional Spheroid Model in Tumor Biology. Pathobiology, 67, 148-157. http://dx.doi.org/10.1159/000028065
[43]
Santini, M.T., Rainaldi, G. and Indovina, P.L. (2000) Apoptosis, Cell Adhesion and the Extracellular Matrix in the Three-Dimensional Growth of Multicellular Tumor Spheroids. Critical Reviews in Oncology/Hematology, 36, 75-87. http://dx.doi.org/10.1016/S1040-8428(00)00078-0
[44]
Mondragon, A.A., Betts-Obregon, B.S., Moritz, R.J., Parvathaneni, K., Navarro, M.M., Kim, H.S., Lee, C.F., LeBaron, R.G., Asmis, R. and Tsin, A.T. (2015) BIGH3 Protein and Macrophages in Retinal Endothelial Cell Apoptosis. Apoptosis, 20, 29-37. http://dx.doi.org/10.1007/s10495-014-1052-6
[45]
Betts-Obregon, B.S., Mondragon, A.A., Mendiola, A.S., LeBaron, R.G., Asmis, R., Zou, T., Gonzalez-Fernandez, F. and Tsin, A.T. (2016) TGF-β Induces BIGH3 Expression and Human Retinal Pericyte Apoptosis: A Novel Pathway of Diabetic Retinopathy. Eye, Epub.
[46]
Moritz, R.J., LeBaron, R.G., Phelix, C.F., Rupaimoole, R., Tsin, A. and Asmis, R. (2016) Macrophage TGF-β1 and the Proapoptotic Extracellular Matrix Protein Bigh3 Induce Renal Cell Apoptosis in Prediabetic and Diabetic Conditions. International Journal of Clinical Medicine, 7, 496-510. http://dx.doi.org/10.4236/ijcm.2016.77055
[47]
Kim, J.E., Kim, S.J., Jeong, H.W., Lee, B.H., Choi, J.Y., Park, R.W., Park, J.Y. and Kim, I.S. (2003) RGD Peptides Released from Beta Ig-H3, a TGF-β-Induced Cell-Adhesive Molecule, Mediate Apoptosis. Oncogene, 22, 2045-2053. http://dx.doi.org/10.1038/sj.onc.1206269
[48]
Morand, S., Buchillier, V., Maurer, F., Bonny, C., Arsenijevic, Y., Munier, F.L. and Schorderet, D.F. (2003) Induction of Apoptosis in Human Corneal and Hela Cells by Mutated BIGH3. Investigative Ophthalmology & Visual Science, 44, 2973-2979. http://dx.doi.org/10.1167/iovs.02-0661
[49]
Ohno, S., Noshiro, M., Makihira, S., Kawamoto, T., Shen, M., Yan, W., Kawashima-Ohya, Y., Fujimoto, K., Tanne, K. and Kato, Y. (1999) RGD-CAP ((Beta)Ig-H3) Enhances the Spreading of Chondrocytes and Fibroblasts Via Integrin α(1)β(1). Biochimica et Biophysica Acta, 1451, 196-205. http://dx.doi.org/10.1016/S0167-4889(99)00093-2
[50]
Kim, J.E., Kim, S.J., Lee, B.H., Park, R.W., Kim, K.S. and Kim, I.S. (2000) Identification of Motifs for Cell Adhesion within the Repeated Domains of Transforming Growth Factor-β-Induced Gene, Betaig-H3. Journal of Biological Chemistry, 275, 30907-30915. http://dx.doi.org/10.1074/jbc.M002752200
[51]
Oh, J.E., Kook, J.K. and Min, B.M. (2005) Beta Ig-H3 Induces Keratinocyte Differentiation Via Modulation of Involucrin and Transglutaminase Expression through the Integrin α3β1 and the Phosphatidylinositol 3-Kinase/Akt Signaling Pathway. Journal of Biological Chemistry, 280, 21629-21637. http://dx.doi.org/10.1074/jbc.M412293200
[52]
Kim, J.E., Jeong, H.W., Nam, J.O., Lee, B.H., Choi, J.Y., Park, R.W., Park, J.Y. and Kim, I.S. (2002) Identification of Motifs in the Fasciclin Domains of the Transforming Growth Factor-Beta-Induced Matrix Protein Betaig-H3 That Interact with the αvβ5 Integrin. Journal of Biological Chemistry, 277, 46159-46165. http://dx.doi.org/10.1074/jbc.M207055200
[53]
Kim, M.O., Yun, S.J., Kim, I.S., Sohn, S. and Lee, E.H. (2003) Transforming Growth Factor-β-Inducible Gene-H3 (Beta(Ig)-H3) Promotes Cell Adhesion of Human Astrocytoma Cells in Vitro: Implication of α6β4 Integrin. Neuroscience Letters, 336, 93-96. http://dx.doi.org/10.1016/S0304-3940(02)01260-0
[54]
Ferguson, J.W., Mikesh, M.F., Wheeler, E.F. and LeBaron, R.G. (2003) Developmental Expression Patterns of Beta-Ig (Betaig-H3) and Its Function as a Cell Adhesion Protein. Mechanisms of Development, 120, 851-864. http://dx.doi.org/10.1016/S0925-4773(03)00165-5
[55]
Reinboth, B., Thomas, J., Hanssen, E. and Gibson, M.A. (2006) Beta Ig-H3 Interacts Directly with Biglycan and Decorin, Promotes Collagen Vi Aggregation, and Participates in Ternary Complexing with These Macromolecules. Journal of Biological Chemistry, 281, 7816-7824. http://dx.doi.org/10.1074/jbc.M511316200
[56]
Billings, P.C., Whitbeck, J.C., Adams, C.S., Abrams, W.R., Cohen, A.J., Engelsberg, B.N., Howard, P.S. and Rosenbloom, J. (2002) The Transforming Growth Factor-β-Inducible Matrix Protein (Beta)Ig-H3 Interacts with Fibronectin. Journal of Biological Chemistry, 277, 28003-28009. http://dx.doi.org/10.1074/jbc.M106837200
[57]
Hashimoto, K., Noshiro, M., Ohno, S., Kawamoto, T., Satakeda, H., Akagawa, Y., Nakashima, K., Okimura, A., Ishida, H., Okamoto, T., Pan, H., Shen, M., Yan, W. and Kato, Y. (1997) Characterization of a Cartilage-Derived 66-KDa Protein (RGD-CAP/Beta Ig-H3) That Binds to Collagen. Biochimica et Biophysica Acta, 1355, 303-314. http://dx.doi.org/10.1016/S0167-4889(96)00147-4
[58]
Dokmanovic, M., Chang, B.D., Fang, J. and Roninson, I.B. (2002) Retinoid-Induced Growth Arrest of Breast Carcinoma Cells Involves Co-Activation of Multiple Growth-Inhibitory Genes. Cancer Biology & Therapy, 1, 24-27. http://dx.doi.org/10.4161/cbt.1.1.35
[59]
Genini, M., Schwalbe, P., Scholl, F.A. and Schafer, B.W. (1996) Isolation of Genes Differentially Expressed in Human Primary Myoblasts and Embryonal Rhabdomyosarcoma. International Journal of Cancer, 66, 571-577. http://dx.doi.org/10.1002/(SICI)1097-0215(19960516)66:4<571::AID-IJC24>3.0.CO;2-9
[60]
Schenker, T. and Trueb, B. (1998) Down-Regulated Proteins of Mesenchymal Tumor Cells. Exp Cell Res, 239, 161-168. http://dx.doi.org/10.1006/excr.1997.3896
[61]
Zhang, L., Zhou, W., Velculescu, V.E., Kern, S.E., Hruban, R.H., Hamilton, S.R., Vogelstein, B. and Kinzler, K.W. (1997) Gene Expression Profiles in Normal and Cancer Cells. Science, 276, 1268-1272. http://dx.doi.org/10.1126/science.276.5316.1268
[62]
Zhao, Y.L., Piao, C.Q. and Hei, T.K. (2002) Overexpression of Betaig-H3 Gene Downregulates Integrin α5β1 and Suppresses Tumorigenicity in Radiation-Induced Tumorigenic Human Bronchial Epithelial Cells. British Journal of Cancer, 86, 1923-1928. http://dx.doi.org/10.1038/sj.bjc.6600304
[63]
Groebe, K. and Mueller-Klieser, W. (1996) On the Relation between Size of Necrosis and Diameter of Tumor Spheroids. International Journal of Radiation Oncology, Biology, Physics, 34, 395-401. http://dx.doi.org/10.1016/0360-3016(95)02065-9
[64]
Kunz-Schughart, L.A., Doetsch, J., Mueller-Klieser, W. and Groebe, K. (2000) Proliferative Activity and Tumorigenic Conversion: Impact on Cellular Metabolism in 3-D Culture. American Journal of Physiology—Cell Physiology, 278, C765-C780.
[65]
Serganova, I., Doubrovin, M., Vider, J., Ponomarev, V., Soghomonyan, S., Beresten, T., Ageyeva, L., Serganov, A., Cai, S., Balatoni, J., Blasberg, R. and Gelovani, J. (2004) Molecular Imaging of Temporal Dynamics and Spatial Heterogeneity of Hypoxia-Inducible Factor-1 Signal Transduction Activity in Tumors in Living Mice. Cancer Research, 64, 6101-6108. http://dx.doi.org/10.1158/0008-5472.CAN-04-0842
[66]
Indovina, P., Collini, M., Chirico, G. and Santini, M.T. (2007) Three-Dimensional Cell Organization Leads to Almost Immediate HRE Activity as Demonstrated by Molecular Imaging of MG-63 Spheroids Using Two-Photon Excitation Microscopy. FEBS Letters, 581, 719-726. http://dx.doi.org/10.1016/j.febslet.2007.01.040