全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

An Advanced Multi-Band Acousto-Optical Radio-Wave Spectrometer with Multi-Channel Frequency Processing for Astrophysical Studies

DOI: 10.4236/ijaa.2016.64032, PP. 393-409

Keywords: Precise Acousto-Optical Spectrum Analysis, Frequency Bandwidth and Resolution, Wide-Aperture Crystalline Cell, Astronomical Instrumentation

Full-Text   Cite this paper   Add to My Lib

Abstract:

We present an advanced schematic arrangement of the radio-wave spectrometer with a few parallel optical arms for processing the data flow. This arrangement includes two principal novelties. First of them consists in the proposed design, where each individual optical arm exhibits its original performances providing parallel multi-band observations within a few different scales simultaneously. These optical arms have the beam shapers providing both the needed incident light polarization and apodization to increase the dynamic range. After parallel acousto-optical processing, data flows of all the optical arms are united by the joint CCD matrix on the stage of the combined electronic data processing. The second novelty is in usage of unique wide-aperture bastron-based acousto-optical cell providing one of the best performances at the middle-frequencies (about 500 MHz) in comparison with the other available crystalline materials in this range. Such multi-band capabilities have a number of applications in astrophysical scenarios at different scales: from objects in the distant universe to planetary atmospheres in the Solar system. Thus one yields the united versatile instrument, which provides comprehensive studies of astrophysical objects simultaneously with precise synchronization in various frequency ranges.

References

[1]  Yun, M.S., et al. (2012) Deep 1.1 mm-Wavelength Imaging of the GOODS-S Field by AzTEC/ASTE—II. Redshift Distribution and Nature of the Sub-Millimeter Galaxy Population. MNRAS, 420, 957-985.
http://dx.doi.org/10.1111/j.1365-2966.2011.19898.x
[2]  Snell, R.L., et al. (2011) The Redshift Search Receiver 3 mm Wavelength Spectra of 10 Galaxies. The Astronomical Journal, 141, No. 2.
http://dx.doi.org/10.1111/j.1365-2966.2011.19898.x
[3]  Carrasco, E., Aretxaga, I. and Irvine, W.M. (2006) The Large Millimeter Telescope. Instituto Nacional de Astrofisica, Optica y Electronica, 139.
[4]  Erickson, N., Narayanan, G., Goeller, R. and Grosslein, R. (2007) An Ultra-Wideband Receiver and Spectrometer for 74 -110 GHz. From Z-Machines to ALMA: (Sub)Millimeter Spectroscopy of Galaxies 375 of Astronomical Society of the Pacific Conference Series, 71.
[5]  Narayanan, G., Heyer, M.H., Brunt, C., Goldsmith, P.F., Snell1, R. and Li, D. (2008) The Five College Radio Astronomy Observatory CO Mapping Survey of the Taurus Molecular Cloud. The Astrophysical Journal Supplement Series, 177, 341.
http://dx.doi.org/10.1086/587786
[6]  Chavez, M. and Hughes, D. (2013) New Quests in Stellar Astrophysics III: A Panchromatic View of Solar-like Stars, with and without Planets. Proceedings of the Conference a Panchromatic View of Solar-like Stars, Astronomical Society of the Pacific Conference Series, Vol. 472, 279.
[7]  Chavez, M., Shcherbakov, A.S., Arellanes, A.O. and Chavushyan, V. (2013) High-Resolu-tion Broadband Millimeter-Wave Astrophysical Spectrometer with Triple Product Acousto-Optical Processor. International Journal of Astronomy and Astrophysics, 3, 421-430.
http://dx.doi.org/10.4236/ijaa.2013.34050
[8]  Shcherbakov, A.S. and Luna Castellanos, A. (2014) Developing an Advanced Prototype of the Acousto-Optical Radio-Wave Spectrometer for Studying Star Formation in the Milky Way. International Journal of Astronomy and Astrophysics, 4, 128-144.
http://dx.doi.org/10.4236/ijaa.2014.41012
[9]  Holland, W.S., Bintley, D., Chapin, E.L., et al. (2013) SCUBA-2: The 10 000 Pixel Bolometer Camera on the James Clerk Maxwell Telescope. MNRAS, 430, 2513-2533.
http://dx.doi.org/10.1093/mnras/sts612
[10]  Goutzoulis, A.P. and Pape, D.R. (1994) Design and Fabrication of Acousto-Optic Devices. In: Goutzoulis, A.P. and Kludzin, V.V., Chapter 1, Principles of Acousto-Optics, Marcel Dekker, NY, 1-68.
[11]  Gnewuch, H., Zayler, N.K., Pannell, C.N., Ross, G.W. and Smith, P.G.R. (2000) Broadband Monolithic Acousto-Optic Tunable filter. Optics Letters, 25, 305-307.
http://dx.doi.org/10.1364/OL.25.000305
[12]  Shcherbakov, A.S., Arellanes, A.O. and Nemov, S.A. (2013) Transmission Function of Collinear Acousto-Optical Interaction Occurred by Acoustic Waves of Finite Amplitude. Journal of the Optical Society of America B, 30, 3174-3183.
http://dx.doi.org/10.1364/JOSAB.30.003174
[13]  Shcherbakov, A.S., Arellanes, A.O. and Nemov, S.A. (2013) Transmission Function of the Collinear Acousto-Optical Filter Controlled by Acoustic Waves of the Finite Amplitude. Optical Engineering, 52, 064001.
http://dx.doi.org/10.1117/1.OE.52.6.064001
[14]  Young, E. and Yao, S.-K. (1981) Design Considerations for Acousto-Optic Devices. Proceedings of the IEEE, 69, 54-64.
http://dx.doi.org/10.1109/PROC.1981.11920
[15]  Chang, I.C. (1995) Chapter 12, Acousto-Optic Devices and Applications. In: Bass, M., Ed., Handbook of Optics, Vol. II., McGraw-Hill, United States.
[16]  Goutzoulis, A.P. and Pape, D.R. (1994) Design and Fabrication of Acousto-Optic Devices. In: Pape, D.R., Gusev, O.V., Kujakov, S.V., Chapter 2, Design of Acousto-Optic Deflectors, Marcel Dekker, NY, 69-122.
[17]  Dixon, R. (1967) Acoustic Diffraction of Light in Anisotropic Media. IEEE Journal of Quantum Electronics, 3, 85-93.
http://dx.doi.org/10.1109/JQE.1967.1074447
[18]  Shaskolskaya, M.P. (1988) Handbook of Acoustical Crystals. Nauka, Moscow, Russia.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133