This work is dedicated to the promotion of the results C. Muntz obtained modifying zeta functions. The properties of zeta functions are studied; these properties lead to new regularities of zeta functions. The choice of a special type of modified zeta functions allows estimating the Riemann’s zeta function and solving Riemann Problem-Millennium Prize Problem.
References
[1]
Euler, L. (1988) Introduction to Analysis of the Infinite. Springer-Verlag, Berlin. https:/doi.org/10.1007/978-1-4612-1021-4
Riemann, G.F.B. (1972) On the Number of Prime Numbers Less than a Given Quantity. Chelsea, New York.
[4]
Titchmarsh, E.C. (1986) The Theory of the Riemann Zeta Function. 2nd Revised (Heath-Brown) Edition, Oxford University Press, Oxford.
[5]
Ray, D. and Singer, I.M. (1971) R-Torsion and the Laplacian on Riemannian Manifolds. Advances in Mathematics, 7, 145-210. https:/doi.org/10.1016/0001-8708(71)90045-4
[6]
Bost, J.-B. (1987) Fibres determinants, determinants regularises et measures sur les espaces de modules des courbes complexes. Séminaire Bourbaki, 152-153, 113-149.
[7]
Kawagoe, K., Wakayama, M. and Yamasaki, Y. (2008) The q-Analogues of the Riemann zeta, Dirichlet L-Functions, and a Crystal Zeta-Function. Forum Mathematicum, 20, 126. https:/doi.org/10.1515/FORUM.2008.001
[8]
Müntz, Ch.H. (1992) Beziehungen der Riemannschen ζ-Funktion zu willkurlichen reellen Funktionen. Matematisk Tidsskrift. B, 39-47.
[9]
Baibekov, S.N. and Durmagambetov. A.A. (2016) Infinitely Many Twin Primes. arXiv:1609.04646 [math.GM]