We use B. Randol’s method to improve the error term in the prime geodesic theorem for a noncompact Riemann surface having at least one cusp. The case considered is a general one, corresponding to a Fuchsian group of the first kind and a multiplier system with a weight on it.
References
[1]
Selberg, A. (1956) Harmonic Analysis and Discontinuous Groups in Weakly Symmetric Riemannian Spaces with Applications to Dirichlet Series. Journal of the Indian Mathematical Society, 20, 47-87.
[2]
Huber, H. (1961) Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgrupen II. Mathematische Annalen, 142, 385-398. https:/doi.org/10.1007/BF01451031
[3]
Huber, H. (1961) Nachtrag zu. Mathematische Annalen, 143, 463-464. https:/doi.org/10.1007/BF01470758
[4]
Hejhal, D. (1973) The Selberg Trace Formula for , Vol. I. Lecture Notes in Mathematics, Volume 548. Springer-Verlag, Berlin-Heidelberg.
[5]
Hejhal, D. (1983) The Selberg Trace Formula for , Vol. II. Lecture Notes in Mathematics, Volume 1001. Springer-Verlag, Berlin-Heidelberg.
[6]
Randol, B. (1977) On the Asymptotic Distribution of Closed Geodesics on Compact Riemann Surfaces. Transactions of the American Mathematical Society, 233, 241-247. https:/doi.org/10.1090/S0002-9947-1977-0482582-9
[7]
Buser, P. (1992) Geometry and Spectra of Compact Riemann Surfaces, Progress in Mathematics, Vol. 106. Birkhäuser, Boston-Basel-Berlin.
[8]
Avdispahić, M. and Smajlović, L. (2009) On the Prime Number Theorem for a Compact Riemmann Surface. Rocky Mountain Journal of Mathematics, 39, 1837-1845. https:/doi.org/10.1216/RMJ-2009-39-6-1837
[9]
Avdispahić, M. and Smajlović, L. (2006) An explicit Formula and Its Application to the Selberg Trace Formula. Monatshefte für Mathematik, 147, 183-198. https:/doi.org/10.1007/s00605-005-0317-0
[10]
Avdispahić, M. and Smajlović, L. (2008) Euler Constants for a Fuchsian Group of the First Kind. Acta Arithmetica, 131, 125-143. https:/doi.org/10.4064/aa131-2-2
[11]
Avdispahić, M. and Smajlović, L. (2016) Selberg Trace Formula as an Explicit Formula and the Prime Geodesic Theorem. (Submitted)
[12]
Fischer, J. (19760 An Approach to the Selberg Trace Formula via Selberg Zeta-Function. Lecture Notes in Mathematics, Volume 1253. Springer-Verlag, Berlin-Heidelberg.
[13]
Hardy, G.H. and Riesz. M. (1915) The General Theory of Dirichlet’s Series. Cambridge University Press, Cambridge.
[14]
Jameson, G.J. (2003) The Prime Number Theorem. Cambridge University Press, Cambridge. https:/doi.org/10.1017/CBO9781139164986
[15]
Park, J. (2010) Ruelle Zeta Function and Prime Geodesic Theorem for Hyperbolic Manifolds with Cusps. In: van Dijk, G. and Wakayama, M., Eds., Casimir Force, Casimir Operators and Riemann Hypothesis, de Gruyter, Berlin, 89-104.