全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Centralized Solar PV Systems for Static Loads Using Constant Voltage Control Method

DOI: 10.4236/cs.2016.713346, PP. 4213-4226

Keywords: Photovoltaic System, Centralized System, Constant Voltage Control Method, Proportional-Integral Controller

Full-Text   Cite this paper   Add to My Lib

Abstract:

The alternative energy resources, like solar, are always complementary due to environmental changes. Energy generation with the sources such as solar and wind is gaining importance and of that photovoltaic conversion is the main focus of researches due to its promising potential as the electrical source. This paper presents the constant voltage method of control where the output of the converter is maintained constant irrespective of the variations in the irradiance with the high step-up isolated efficient single switch DC-DC converter for the solar PV systems. Constant voltage method of control uses the array of photovoltaic systems as its energy source. The output of the Solar PV systems is nonlinear and has its dependency on temperature and irradiance by which the panel voltage and current varies with the variation in irradiance. Constant voltage control method always operates in such a way that the converter voltage is tried to be maintained constantly to the reference voltage which is set by the user. The system used here utilizes high step single switch isolated DC-DC converter and monitors the voltage continuously by varying the duty cycle to maintain the converter voltage always constant. As a way of improving the performance, both the open and closed loop analysis is done where the closed loop analysis uses the PI controller for its performance. The model is implemented in MATLAB and it accepts the irradiance as the input and outputs the constant voltage from the converter and the feasibility of the proposed converter topology is confirmed with experimental results of the prototype model.

References

[1]  Parmar, M.N. and Jotangiya, V.G. (2014) Step-Up DC-DC Converter with High Voltage Gain Using Switched-Inductor Technique. International Journal of Engineering Development and Research, 2, 32-35.
[2]  Gopi, A. and Saravanakumar, R. (2014) High Step-Up Isolated Efficient Single Switch DC-DC Converter for Renewable Energy Source. Ain Shams Engineering Journal, 5, 1115-1127.
https:/doi.org/10.1016/j.asej.2014.05.001
[3]  Basanth, A.J. and Natarajan, S.P. (2013) Performance Analysis of Positive Output Super-Lift Re-Lift Luo Converter with PI and Neuro Controllers. IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE), 6, 21-27.
[4]  Parikh, J. and Parikh, K. (2013) Simulation of Incremental Conductance Mppt with Direct Control Method Using Cuk Converter. IJRET, 2, 557-566.
[5]  Chitra, A., Palackal, R.M.S., Viswanathan, K.G. and Nambiar, N. (2013) An Incremental Conductance Based Maximum Power Point Tracking Algorithm for a Solar Photovoltaic System. International Journal of Applied Engineering Research, 8, 2299-2302.
[6]  Tseng, K.C. and Liang, T.J. (2004) Novel High-Efficiency Step-Up Converter. IEE Proceedings of Electric Power Applications, 151, 182-190.
https:/doi.org/10.1049/ip-epa:20040022
[7]  Kobayashi, K., Matsuo, H. and Sekine, Y. (2004) A Novel Optimum Operating Point Tracker of the Solar Cell Power Supply System. IEEE Conference on Power Electronics, 3, 361-367.
[8]  Dall’Anese, E., Dhople, S.V., Johnson, B.B. and Giannakis, G.B. (2014) Decentralized Optimal Dispatch of Photovoltaic Inverters in Residential Distribution Systems. IEEE Transactions on Energy Conversion, 29, 957-967.
[9]  Liu, Y.-H., Huang, S.-C., Huang, J.-W. and Liang, W.-C. (2012) A Particle Swarm Optimization-Based Maximum Power Point Tracking Algorithm for PV Systems Operating under Partially Shaded Conditions. IEEE Transactions on Energy Conversion, 27, 1027-1035.
https:/doi.org/10.1109/TEC.2012.2219533
[10]  Aganah, K.A. and Leedy, A.W. (2011) A Constant Voltage Maximum Power Point Tracking Method for Solar Powered Systems. IEEE 43rd Southeastern Symposium on System Theory, 14-16 March 2011.
[11]  Gao, L.J., Dougal, R.A., Liu, S.Y. and Iotova, A.P. (2009) Parallel-Connected Solar PV System to Address Partial and Rapidly Fluctuating Shadow Conditions. IEEE Transactions on Industrial Electronics, 56, 101-110.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133